4.7 Article

Torsionally induced exciton localization and decoherence in pi-conjugated polymers

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 21, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5054176

关键词

-

资金

  1. Balliol-MIT Academic Exchange Program
  2. EPSRC Centre for Doctoral Training, Theory and Modelling in Chemical Sciences [EP/L015722/1]
  3. University College Oxford
  4. Engineering and Physical Sciences Research Council [1514396] Funding Source: researchfish

向作者/读者索取更多资源

We develop a model of excitons coupled to the rotational motion of monomers to study the torsionally induced relaxation and decoherence of excitons in pi-conjugated polymers. The model assumes that the monomer units are described by elastically uncoupled harmonic oscillators and that there is a linear exciton-roton coupling. Although the rotational degrees of freedom are much slower than the exciton, so that the adiabatic approximation is generally expected to be valid, we also investigate possible quantized roton corrections via coupled time evolving block decimation-Ehrenfest equations of motion. For the relaxation of the lowest-excited exciton, we find that (1) for a polymer chain with a ground state spiral torsional conformation, the equilibrium angular displacement of each monomer is proportional to the difference of the exciton bond-orders on the neighboring bridging bonds. Consequently, this displacement vanishes in the long chain limit and a classical (Landau) exciton-polaron is not formed. (2) For a polymer chain with a ground state staggered torsional conformation, the equilibrium angular displacement of each monomer is proportional to the sum of the exciton bond-orders on the neighboring bridging bonds. Consequently, there is significant angular displacement and local planarization causing exciton density localization. A classical (Landau) exciton-polaron is formed where the staggered angular displacement is proportional to the exciton density. (3) Generally, in the adiabatic limit, the decay of off-diagonal long-range order (i.e., exciton decoherence) mirrors the localization of the exciton density. However, quantum corrections to the rotational motion alter this adiabatic prediction because of correlated exciton-roton dynamics within the first rotational half-period. In particular, exciton-polaron quasiparticle formation causes more rapid and oscillatory exciton decoherence and slower exciton density localization. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据