4.6 Article

Simulations of the regulatory ACT domain of human phenylalanine hydroxylase (PAH) unveil its mechanism of phenylalanine binding

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 51, 页码 19532-19543

出版社

ELSEVIER
DOI: 10.1074/jbc.RA118.004909

关键词

molecular dynamics; ligand-binding protein; kinetics; allosteric regulation; conformational change; binding pathways; ligand binding kinetics; Markov state models; phenylketonuria; phenylalanine hydroxylase; molecular simulation; conformational selection

资金

  1. National Institutes of Health [1R01GM123296-01, 1S10OD020095-01, 1R01NS100081, P30CA006927]
  2. National Science Foundation [CNS-09-58854]
  3. BioMarin Pharmaceuticals
  4. National PKU Alliance

向作者/读者索取更多资源

Phenylalanine hydroxylase (PAH) regulates phenylalanine (Phe) levels in mammals to prevent neurotoxicity resulting from high Phe concentrations as observed in genetic disorders leading to hyperphenylalaninemia and phenylketonuria. PAH senses elevated Phe concentrations by transient allosteric Phe binding to a protein-protein interface between ACT domains of different subunits in a PAH tetramer. This interface is present in an activated PAH (A-PAH) tetramer and absent in a resting-state PAH (RS-PAH) tetramer. To investigate this allosteric sensing mechanism, here we used the GROMACS molecular dynamics simulation suite on the Folding@home computing platform to perform extensive molecular simulations and Markov state model (MSM) analysis of Phe binding to ACT domain dimers. These simulations strongly implicated a conformational selection mechanism for Phe association with ACT domain dimers and revealed protein motions that act as a gating mechanism for Phe binding. The MSMs also illuminate a highly mobile hairpin loop, consistent with experimental findings also presented here that the PAH variant L72W does not shift the PAH structural equilibrium toward the activated state. Finally, simulations of ACT domain monomers are presented, in which spontaneous transitions between resting-state and activated conformations are observed, also consistent with a mechanism of conformational selection. These mechanistic details provide detailed insight into the regulation of PAH activation and provide testable hypotheses for the development of new allosteric effectors to correct structural and functional defects in PAH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据