4.8 Article

Environmental Benefits of Novel Nonhuman Food Inputs to Salmon Feeds

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 4, 页码 1967-1975

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b03832

关键词

-

资金

  1. BIOFEED-Novel salmon feed by integrated bioprocessing of nonfood biomass (the Research Council of Norway) [239003/O30]
  2. University of California Office of the President's Global Food Initiative-Food from the Sea Project, Foods of Norway, Centre for Research-based Innovation (the Research Council of Norway) [237841/030]

向作者/读者索取更多资源

Global population growth and changing diets increase the importance, and challenges, of reducing the environmental impacts of food production. Farmed seafood is a relatively efficient way to produce protein and has already overtaken wild fisheries. The use of protein-rich food crops, such as soy, instead of fishmeal in aquaculture feed diverts these important protein sources away from direct human consumption and creates new environmental challenges. Single cell proteins (SCPs), including bacteria and yeast, have recently emerged as replacements for plant-based proteins in salmon feeds. Attributional life cycle assessment is used to compare salmon feeds based on protein from soy, methanotrophic bacteria, and yeast ingredients. All ingredients are modeled at the industrial production scale and compared based on seven resource use and emissions indicators. Yeast protein concentrate showed drastically lower impacts in all categories compared to soy protein concentrate. Bacteria meal also had lower impacts than soy protein concentrate for five of the seven indicators. When these target meals were incorporated into complete feeds the relative trends remain fairly constant, but benefits of the novel ingredients are dampened by high impacts from the nontarget ingredients. Particularly, primary production requirements (PPR) are about equal and constant across all feeds for both analyses since PPR was driven by fishmeal and oil. The bacteria-based feed has the highest climate change impacts due to the use of methane to feed the bacteria who then release carbon dioxide. Overall, the results of this study suggest that incorporating SCP ingredients into salmon feeds can help reduce the environmental impacts of salmon production. Continued improvements in SCP production would further increase the sustainability of salmon farming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据