4.7 Article

A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 180, 期 -, 页码 769-783

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2018.11.031

关键词

Spiral woven mesh; Wick; Ultra-thin flattened heat pipe; Filling ratio; Thermal performance

资金

  1. National Natural Science Foundation of China [51675185]
  2. Guangdong Natural Science Foundation [2018B030311043]
  3. Project of the Guangzhou Science and Technology Plan [201807010074, 201707010071]
  4. Project of Tianhe District Science and Technology Plan [201705YX263]
  5. Fundamental Research Funds for the Central Universities, SCUT

向作者/读者索取更多资源

In this work, a novel biporous spiral woven mesh wick is developed to enhance the thermal performance of an ultra-thin flattened heat pipe for cooling high heat flux electronic devices. The biporous wick with different sized pores is hybrid woven using 0.05 and 0.04 mm diameter copper wires in every strand. Three different structures are designed to study the effect of the characteristic parameters of the wick on the thermal performance of the ultra-thin flattened heat pipe. The working fluid flow characteristics of the wick are analyzed theoretically. The capillary rate-of-rise experiment with deionized water using the infrared camera method is carried out to characterize the capillary performance of the wick. The thermal performance of the ultra-thin flattened heat pipe is experimentally investigated. The results indicate that the biporous wick combines the advantages of high permeability due to the large pores and large capillary force due to the small pores. The optimal biporous wick has 22% fewer copper wires than the monoporous wick, but the maximum heat transport capacity of the ultra-thin flattened heat pipe is able to approach 24 W, which realizes the demands of both low production cost and high thermal performance using the biporous wick.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据