4.7 Article

Belowground plant parts are crucial for comprehensively estimating total plant richness in herbaceous and woody habitats

期刊

ECOLOGY
卷 100, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/ecy.2575

关键词

454 sequencing; above- and belowground plant richness; next-generation sequencing; plant biomass; root identification; trnL (UAA) intron; vegetation surveys

类别

资金

  1. Archimedes Foundation
  2. University of Regina
  3. Natural Sciences and Engineering Research Council of Canada
  4. Estonian Ministry of Education and Research [IUT20-28, IUT20-29]
  5. European Regional Development Fund (Centre of Excellence EcolChange)

向作者/读者索取更多资源

Most studies consider aboveground plant species richness as a representative biodiversity measure. This approach inevitably assumes that the partitioning of total plant species richness into above- and belowground components is constant or at least consistent within and across vegetation types. However, with studies considering belowground plant richness still scarce and completely absent along vegetation gradients, this assumption lacks experimental support. Novel DNA sequencing techniques allow economical, high-throughput species identification of belowground environmental samples, enabling the measurement of the contributions of both above- and belowground plant components to total plant richness. We investigated above- and belowground plant species richness in four vegetation types (birch forest, heath, low alpine tundra, high alpine tundra) at the scale of herbaceous plant neighborhoods (dm) using 454 sequencing of the chloroplast trnL (UAA) intron to determine the plant species richness of environmental root samples and combined it with aboveground data from vegetation surveys to obtain total plant species richness. We correlated the measured plant species richness components with each other and with their respective plant biomass components within and across vegetation types. Total plant species richness exceeded aboveground richness twice on average and by as much as three times in low alpine tundra, indicating that a significant fraction of belowground plant richness cannot be recorded aboveground. More importantly, no consistent relationship among richness components (above- and belowground) was found within or across vegetation types, indicating that aboveground richness alone cannot predict total plant richness in contrasting vegetation types. Finally, no consistent relationship between plant richness and the corresponding biomass component was found. Our results clearly show that aboveground plant richness alone is a poor estimator of total plant species richness within and across different vegetation types. Consequently, it is crucial to account for belowground plant richness in future plant ecological studies in order to validate currently accepted plant richness patterns, as well as to measure potential changes in plant community composition in a changing environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据