4.8 Article

Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons

期刊

CURRENT BIOLOGY
卷 28, 期 24, 页码 3911-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2018.10.048

关键词

-

资金

  1. Biotechnology and Biological Science Research Council (BBSRC) [BB/JO1446X/1, BB/M024946/1]
  2. Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund (ISSF)
  3. BBSRC [BB/M024946/1] Funding Source: UKRI

向作者/读者索取更多资源

Locomotion relies on the coordinated activity of rhythmic neurons in the hindbrain and spinal cord and depends critically on the intrinsic properties of excitatory interneurons. Therefore, understanding how ion channels sculpt the properties of these interneurons, and the consequences for circuit function and behavior, is an important task. The hyperpolarization-activated cation current, Ih, is known to play important roles in shaping neuronal properties and for rhythm generation in many neuronal networks. We show in stage 42 Xenopus laevis frog tadpoles that Ih is strongly expressed only in excitatory descending interneurons (dINs), an important ipsilaterally projecting population that drives swimming activity. The voltage-dependent HCN channel blocker ZD7288 completely abolished a prominent depolarizing sag potential in response to hyperpolarization, the hallmark of Ih, and hyperpolarized dINs. ZD7288 also affected dIN post-inhibitory rebound firing, upon which locomotor rhythm generation relies, and disrupted locomotor output. Block of Ih also unmasked an activity-dependent ultraslow afterhyperpolarization (usAHP) in dINs following swimming, mediated by a dynamic Na/K pump current. This usAHP, unmasked in dINs by ZD7288, resulted in suprathreshold stimuli failing to evoke swimming at short inter-swim intervals, indicating an important role for Ih in maintaining swim generation capacity and in setting the post-swim refractory period of the network. Collectively, our data suggest that the selective expression of Ih in dINs determines specific dIN properties that are important for rhythm generation and counteracts an activity-dependent usAHP to ensure that dINs can maintain coordinated swimming over a wide range of inter-swim intervals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据