4.7 Article

An integrated framework for solid modeling and structural analysis of layered composites with defects

期刊

COMPUTER-AIDED DESIGN
卷 106, 期 -, 页码 1-12

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2018.07.006

关键词

Composite structures modeling; CAD model generation; Automatic preprocessing; Delamination modeling; CAD and FE modeling

资金

  1. National Aeronautics and Space Administration (NASA), United States through Center for Non-Destructive Evaluation (CNDE) at Iowa State University [NNL15AA12C]

向作者/读者索取更多资源

Laminated fiber-reinforced polymer (FRP) composites are widely used in aerospace and automotive industries due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. Non-destructive evaluation (NDE) of composites using ultrasonic testing (UT) can identify the presence of defects. However, manually incorporating the damage in a CAD model of a multi-layered composite structure and evaluating its structural integrity is a tedious process. We have developed an automated framework to create a layered 3D CAD model of a composite structure and automatically preprocess it for structural finite element (FE) analysis. In addition, we can incorporate flaws and known composite damage automatically into this CAD model. The framework generates a layer-by-layer 3D structural CAD model of the composite laminate, replicating its manufacturing process. The framework can create non-trivial composite structures such as those that include stiffeners. Outlines of structural defects, such as delaminations detected using UT of the laminate, are incorporated into the CAD model between the appropriate layers. The framework is also capable of incorporating fiber/matrix cracking, another common defect observed in fiber-reinforced composites. Finally, the framework can preprocess the resulting 3D CAD models with defects for direct structural analysis by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept of the framework with capabilities of creating composite structures with stiffeners, incorporating delaminations between the composite layers, and automatically preprocessing the CAD model for finite element structural analysis. The framework will ultimately aid in accurately assessing the residual life of the composite and making informed decisions regarding repairs. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据