4.6 Article

Copper Catalyzed C-H Activation

期刊

CHEMICAL RECORD
卷 19, 期 7, 页码 1302-1318

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/tcr.201800107

关键词

C-H activation; oxidative; coupling; formamide; nanoparticles

资金

  1. J.C. Bose grant
  2. Godrej Consumer Products Limited (GPCL)
  3. J.C. Bose National Fellowship ( DST, GoI)

向作者/读者索取更多资源

Activation of C-H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre-functionalization step of coupling reactants such as organic halides, pseudo-halides and organometallic reagents. The C-H activation facilitates a simple and straight forward approach devoid of pre-functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C-H bond activation of small organic molecules, for example, formamide C-H bond can be activated and coupled with beta-dicarbonyl or 2-carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N-dimethyl substituted amides, 5-substituted-gamma-lactams and alpha-acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N-aryl-gamma-amino-gamma-lactams by oxidative coupling of aromatic amines with 2-pyrrolidinone. Reusable transition metal HT-derived oxide catalyst was used for the synthesis of N,N-dimethyl substituted amides by the oxidative cross-coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Surface Functionalization of WS2 Nanosheets with Alkyl Chains for Enhancement of Dispersion Stability and Tribological Properties

Sangita Kumari, Ajay Chouhan, Om P. Sharma, Sherif Abdulkader Tawfik, Kevin Tran, Michelle J. S. Spencer, Suresh K. Bhargava, Sumeet Walia, Anjan Ray, Om P. Khatri

Summary: By synthesizing oxygenated WS2 nanosheets through strong acid-mediated oxidation and ultrasound-assisted exfoliation, and functionalizing them with organosilanes, a significant enhancement in lubrication properties was achieved in mineral lube base oil.

ACS APPLIED MATERIALS & INTERFACES (2022)

Review Environmental Sciences

Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives

Ragini Singh, Akhela Umapathi, Gaurang Patel, Chayan Patra, Uzma Malik, Suresh K. Bhargava, Hemant Kumar Daima

Summary: Nanozymes are nanomaterials that have enzyme-like properties and unique physical and chemical characteristics. They have shown great potential in environmental monitoring and remediation of pollutants, including heavy metals and organic compounds. However, their inherent toxicity needs to be evaluated and monitored to ensure their safe use.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Chemistry, Physical

Role of lattice strain in bifunctional catalysts for tandem furfural hydrogenation-esterification

Luqman H. Hashim, Ahmed Halilu, Yahaya Balarabe Umar, Mohd Rafie Bin Johan, Mohamed Kheireddine Aroua, Paramita Koley, Suresh K. Bhargava

Summary: This study focuses on the design and synthesis of highly active bifunctional catalysts for the conversion of furfural to furfuryl acetate. The catalysts with lower lattice strain exhibited higher catalytic activity.

CATALYSIS SCIENCE & TECHNOLOGY (2023)

Article Electrochemistry

Towards Low-Voltage and High-Capacity Conversion-Based Oxide Anodes by Configuration Entropy Optimization

Lizhi Qian, Jinliang Li, Gongxu Lan, Yuan Wang, Sufeng Cao, Lu Bai, Runguo Zheng, Zhiyuan Wang, Suresh K. Bhargava, Hongyu Sun, Hamidreza Arandiyan, Yanguo Liu

Summary: Transition metal oxide (TMO)-based anodes attract attention for lithium storage due to their high capacity, easy synthesis, and improved battery safety. The electrochemical performance of TMO anodes can be significantly improved through configurational entropy optimization. For example, a high-entropy oxide (FeCoNiCrCu)(3)O-4 with low potential and high capacity is synthesized. In both half-cell and full-cell configurations, the (FeCoNiCrCu)(3)O-4 electrode shows excellent performance with high specific capacity and low discharge voltage.

CHEMELECTROCHEM (2023)

Article Chemistry, Inorganic & Nuclear

Formation of Heterobimetallic Complexes by Addition of d10-Metal Ions to [(Me3P) x M(2-C6F4PPh2)2] (x=1, 2; M = Ni and Pt): A Synthetic and Computational Study of Metallophilic Interactions

Robert Gericke, Martin A. Bennett, Steven H. Priver, Suresh K. Bhargava

Summary: A series of mono and double bridged heterobimetallic d(8)-d(10) complexes with a [MM'](3+) core (M = Ni, Pt; M' = Cu, Ag, Au) were synthesized. The compounds have short metal-metal separations and metallophilic bonding interactions. Analysis using DFT showed the bonding trends between the metals.

INORGANIC CHEMISTRY (2023)

Review Chemistry, Physical

Perovskite Catalysts for Biomass Valorization

Hamidreza Arandiyan, Putla Sudarsanam, Suresh K. Bhargava, Adam F. Lee, Karen Wilson

Summary: Biomass is a renewable energy source that is being increasingly utilized due to concerns about climate change caused by fossil fuel consumption. Waste biomass-derived fuels and chemicals offer a solution to reduce reliance on fossil fuels and achieve "Net Zero 2050 CO2 emissions" with environmental, health, and economic benefits. This review focuses on the use of perovskite oxide catalysts for biomass valorization, discussing their structure-reactivity relationships in various reactions. The study highlights the prospects and challenges for the broader application of perovskite oxide catalysts in biomass valorization.

ACS CATALYSIS (2023)

Article Geochemistry & Geophysics

Deportment of Metals from E-Waste PCBs towards Alloy and Slag Phases during Smelting Using CaO-Al2O3-SiO2-B2O3 Slags

Md Khairul Islam, Michael Somerville, Mark I. Pownceby, James Tardio, Nawshad Haque, Suresh Bhargava

Summary: Printed circuit boards (PCBs) from antiquated electronic goods were processed through pyrometallurgical route to separate alloy and slag phases. The addition of B2O3 flux, along with CaO and SiO2, decreased the melting temperature and improved the recovery of valuable metals at 1350°C smelting temperature. A fluxing strategy for smelting e-waste PCBs containing high Al2O3 was proposed based on the experimental findings of this research.

MINERALS (2023)

Review Immunology

Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines

K. Swetha, Niranjan G. Kotla, Lakshmi Tunki, Arya Jayaraj, Suresh K. Bhargava, Haitao Hu, Srinivasa Reddy Bonam, Rajendra Kurapati

Summary: Lipid nanoparticles (LNPs) are an advanced technology for efficient in vivo delivery of exogenous mRNA, especially for COVID-19 vaccines. LNPs consist of four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). This review presents recent advances and insights in LNPs design, composition, and properties, with a focus on COVID-19 vaccine development. The role of ionizable lipids in mRNA vaccines and the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy are discussed.

VACCINES (2023)

Review Engineering, Biomedical

Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology

N. P. Navya, Sunil Mehla, Amrin Begum, Harit K. Chaturvedi, Ruchika Ojha, Christian Hartinger, Magdalena Plebanski, Suresh K. Bhargava

Summary: Nanomaterials that mimic natural enzymes in the human body are known as nanozymes and have diagnostic, imaging, and therapeutic capabilities. Smart nanozymes exploit the tumor microenvironment to provide effective cancer therapy. This review focuses on the design and synthesis of nanozymes for cancer therapy, including understanding the tumor microenvironment and surface chemistry for site-specific therapy.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Engineering, Chemical

Design and optimization of antisolvent crystallization of L-aspartic acid using response surface model: Focused beam reflectance measurements

P. Sudhakar, Alka Kumari, Sazal Kundu, Vivek Ravi Sankar, Prathap Kumar Thella, Kalpit Shah, Suresh K. Bhargava

Summary: In this study, antisolvent crystallization of L-aspartic acid (L-ASP) was optimized using response surface methodology (RSM) and a focused beam reflectance measurement (FBRM) tool. Important process parameters such as storage temperature, stirrer velocity, storage time, and solvent ratio were identified to significantly improve the yield and quality of the product, while chord length distribution (CLD) data was obtained through FBRM. The results showed that 2-propanol was a more effective antisolvent than methanol for L-ASP crystallization. Temperature was found to have a critical effect on crystal formation, with crystals forming between 298.15 and 303.15 K. ANOVA results confirmed the significant impact of all studied variables on the yield and CLD. The optimum crystallization conditions were determined as 18 h, stirrer velocity of 200 rpm, distilled water-formic acid/IPA ratio of 1:3 (v/v), and storage temperature of 298.15 K. A quadratic response surface model satisfactorily described the crystallization of L-ASP with an R2 of 0.99 and a deviation of 1.2%.

CHEMICAL ENGINEERING RESEARCH & DESIGN (2023)

Article Chemistry, Multidisciplinary

Enhancement of the electrochemical oxygen reduction performance by surface oxygen vacancies on hematite nanosheets

Gongxu Lan, Huilin Fan, Yuan Wang, Hamidreza Arandiyan, Suresh K. Bhargava, Zongping Shao, Hongyu Sun, Yanguo Liu

Summary: The surface atomic arrangement and defective structures of electrocatalysts play a crucial role in determining their catalytic activity and selectivity. In this study, alpha-Fe2O3 nanosheets with surface oxygen vacancies were synthesized and their oxygen vacancy concentration was varied to study their oxygen reduction reaction (ORR) performance. The results showed that increasing the oxygen vacancy concentration improved the ORR activity up to a certain point, but further increase deteriorated the crystalline quality and affected the performance.

NEW JOURNAL OF CHEMISTRY (2023)

Review Chemistry, Physical

A comprehensive review of cathode materials for Na-air batteries

Pengcheng Mao, Hamidreza Arandiyan, Sajjad S. Mofarah, Pramod Koshy, Cristina Pozo-Gonzalo, Runguo Zheng, Zhiyuan Wang, Yuan Wang, Suresh K. Bhargava, Hongyu Sun, Zongping Shao, Yanguo Liu

Summary: Rechargeable sodium-air batteries have gained extensive attention and developed rapidly in recent years for electrochemical energy storage applications due to their low costs, abundance of precursor resources, and high energy density. However, challenges such as poor charge-discharge reversibility at the cathode and the formation of sodium dendrites at the anode still need to be addressed. Therefore, designing efficient and stable air cathode materials is crucial for the development and practical application of sodium-air batteries.

ENERGY ADVANCES (2023)

Review Chemistry, Multidisciplinary

Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates

Uzma Malik, Roxanne Hubesch, Paramita Koley, Maciej Mazur, Sunil Mehla, Sai Kishore Butti, Milan Brandt, P. R. Selvakannan, Suresh Bhargava

Summary: Combining additive manufacturing with photocatalytic and plasmonic functionalities has promising applications in next-generation SERS. Laser powder bed fusion is a mature technique for manufacturing metallic structures, allowing the printing of complex internal structures. This feature article elaborates on the grafting of plasmonic and semiconductor nanoparticles on LPBF manufactured metallic substrates, showcasing the potential for tailoring substrate properties.

CHEMICAL COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

The impact of dendrite morphology on the optical properties of sunflower mimic plasmonic metasurfaces

Sunil Mehla, Sivacarendran Balendhran, Suresh K. Bhargava

Summary: This study investigates the impact of variations in the morphology of sunflower mimic metasurfaces on their plasmonic activity using experimental studies and finite difference time domain (FDTD) simulations. The study found that light polarization and morphological features such as dendrite shape, aspect ratio, and packing density play an important role in the distribution of enhanced electric field and plasmonic hot spots.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Thermodynamics

Calorimetric transformation studies for crystal growth kinetics of benzoic acid in binary mixtures during cooling crystallization

Ramesh Tangirala, Anoosha Borra, Bankupalli Satyavathi, Prathap Kumar Thella, K. Padmaja, Madapusi P. Srinivasan, Rajarathinam Parthasarathy, Suresh Bhargava

Summary: Crystallization experiments can provide insights into growth kinetic parameters through seeded or unseeded processes, aiding in the design of optimal crystallizers and control of crystal size distribution.

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2022)

暂无数据