4.4 Article

Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria

期刊

AMINO ACIDS
卷 51, 期 3, 页码 383-393

出版社

SPRINGER WIEN
DOI: 10.1007/s00726-018-2673-9

关键词

Antimicrobial peptide; Dilipid ultrashort cationic lipopeptides; Combination therapy; Chloramphenicol; Synergy; Adjuvant

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Manitoba Health Research Council (MHRC)

向作者/读者索取更多资源

The necessity to develop therapeutic agents and strategies to abate the spread of antibiotic-resistant pathogens is prominent. Antimicrobial peptides (AMPs) provide scaffolds and inspiration for antibiotic development. As an AMP of shorter scaffold, eight dilipid ultrashort cationic lipopeptides (dUSCLs) were prepared consisting of only four amino acids and varying dilipids. Lipids were acylated at the peptide N-terminus and the epsilon-amine side chain of the N-terminal l-lysine. Compounds that possess aliphatic dilipids of 11 carbons-long showed significant hemolysis and therefore limited therapeutic application. Several non-hemolytic dUSCLs were identified to enhance the activity of chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Compounds 2 and 6 have a short peptide sequence of KKKK and KKGK, respectively, and are both acylated with an aliphatic dilipid of nine carbons-long potentiated chloramphenicol against MDR clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae. Both dUSCLs showed comparable adjuvant potency in combination with chloramphenicol. However, dUSCL 2 synergized with a wider span of antibiotic classes against P. aeruginosa relative to dUSCL 6 that included rifampicin, trimethoprim, minocycline, fosfomycin, piperacillin, ciprofloxacin, levofloxacin, moxifloxacin, linezolid and vancomycin. Our data revealed that dUSCLs can indirectly disrupt active efflux of chloramphenicol in P. aeruginosa. This along with their membrane-permeabilizing properties may explain the dUSCLs synergistic combination with conventional antibiotics against Gram-negative bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据