4.8 Article

Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 1, 页码 774-783

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b17273

关键词

Mg-ion batteries; group XIV elements; anode materials; first-principles calculations; ionic diffusivity; phase transition; overpotential; electrode potential

资金

  1. Australian Research Council [DP160103661]

向作者/读者索取更多资源

Magnesium (Mg) metal has been widely explored as an anode material for Mg-ion batteries (MIBs) owing to its large specific capacity and dendrite-free operation. However, critical challenges, such as the formation of passivation layers during battery operation and anode electrolyte-cathode incompatibilities, limit the practical application of Mg-metal anodes for MIBs. Motivated by the promise of group XIV elements (namely, Si, Ge, and Sn) as anodes for lithium- and sodium-ion batteries, here, we conduct systematic first-principles calculations to explore the thermodynamics and kinetics of group XIV anodes for MIBs and to identify the atomistic mechanisms of the electrochemical insertion reactions of Mg ions. We confirm the formation of amorphous MgxX phases (where X = Si, Ge, and Sn) in anodes via the breaking of the stronger X-X bonding network replaced by weaker Mg-X bonding. Mg ions have higher diffusivities in Ge and Sn anodes than in Si, resulting from weaker Ge-Ge and Sn-Sn bonding networks. In addition, we identify thermodynamic instabilities of MgxX that require a small overpotential to avoid aggregation (plating) of Mg at anode/electrolyte interfaces. Such comprehensive first-principles calculations demonstrate that amorphous Ge and crystalline Sn can be potentially effective anodes for practical applications in MIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据