4.3 Article

Substrate screening effects on the quasiparticle band gap and defect charge transition levels in MoS2

期刊

PHYSICAL REVIEW MATERIALS
卷 2, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.2.084002

关键词

-

向作者/读者索取更多资源

Monolayer MoS2 has emerged as an interesting material for nanoelectronic and optoelectronic devices. The effect of substrate screening and defects on the electronic structure of MoS2 are important considerations in the design of such devices. We find a giant renormalization to the free-standing quasiparticle band gap in the presence of metallic substrates, in agreement with recent scanning tunneling spectroscopy and photoluminescence experiments. Our sulfur vacancy defect calculations using the density functional theory plus GW formalism, reveal two charge transition levels (CTLs) in the pristine band gap of MoS2. The (0/-1) CTL is significantly renormalized with the choice of substrate, with respect to the pristine valence band maximum (VBM). The (+1/0) level, on the other hand, is pinned 100 meV above the pristine VBM for the different substrates. This opens up a pathway to effectively engineer defect charge transition levels in two-dimensional materials through the choice of substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据