4.6 Article

Frog tongue acts as muscle-powered adhesive tape

期刊

ROYAL SOCIETY OPEN SCIENCE
卷 2, 期 9, 页码 -

出版社

ROYAL SOC
DOI: 10.1098/rsos.150333

关键词

adhesion; biomaterials; feeding; amphibians; biomechanics

资金

  1. German Research Foundation (DFG) [KL2707/2-1]

向作者/读者索取更多资源

Frogs are well known to capture fast-moving prey by flicking their sticky tongues out of the mouth. This tongue projection behaviour happens extremely fast which makes frog tongues a biological high-speed adhesive system. The processes at the interface between tongue and prey, and thus the mechanism of adhesion, however, are completely unknown. Here, we captured the contact mechanics of frog tongues by filming tongue adhesion at 2000 frames per second through an illuminated glass. We found that the tongue rolls over the target during attachment. However, during the pulling phase, the tongue retractor muscle acts perpendicular to the target surface and thus prevents peeling during tongue retraction. When the tongue detaches, mucus fibrils form between the tongue and the target. Fibrils commonly occur in pressuresensitive adhesives, and thus frog tongues might be a biological analogue to these engineered materials. The fibrils in frog tongues are related to the presence of microscopic papillae on the surface. Together with a layer of nanoscale fibres underneath the tongue epithelium, these surface papillae will make the tongue adaptable to asperities. For the first time, to the best of our knowledge, we are able to integrate anatomy and function to explain the processes during adhesion in frog tongues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据