4.2 Review

Quantitative dynamics of adipose cells

期刊

ADIPOCYTE
卷 1, 期 2, 页码 80-88

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/adip.19705

关键词

cell size distribution; mathematical modeling; size-dependent growth; lipid droplet; lipolysis; lipogenesis; adipogenesis; apoptosis; turnover

资金

  1. National Institutes of Health
  2. National Institute of Diabetes and Digestive and Kidney Diseases

向作者/读者索取更多资源

Adipose cells are unique in the dynamism of their sizes, a requisite for their main function of storing and releasing lipid. Lipid metabolism is crucial for energy homeostasis. However, the regulation of lipid storage capacity in conditions of energy excess and scarcity is still not clear. It is not technically feasible to monitor every process affecting storage capacity such as recruitment, growth/shrinkage and death of individual adipose cells in real time for a sufficiently long period. However, recent computational approaches have allowed an examination of the detailed dynamics of adipose cells using statistical information in the form of precise measurements of adipose cell-size probability distributions. One interesting finding is that the growth/shrinkage of adipose cells (> 50 mu m diameter) under positive/negative energy balance is proportional to the surface area of cells, limiting efficient lipid absorption/release from larger adipose cells. In addition to the physical characteristics of adipose cells, quantitative modeling integrates dynamics of adipose cells, providing the mechanism of cell turnover under normal and drug-treated conditions. Thus, further use of mathematical modeling applied to experimental measurements of adipose cell-size probability distributions in conjunction with physiological measurements of metabolic state may help unravel the intricate network of interactions underlying metabolic syndromes in obesity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据