4.7 Article

Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy

期刊

出版社

BMC
DOI: 10.1186/2051-1426-1-15

关键词

PD-1; Immunotherapy; Listeria-based vaccine; Combinational immunotherapy

资金

  1. Intramural Research Program of the Center for Cancer Research, NCI, NIH
  2. Georgia Regents University Cancer Center (GRUCC)
  3. Advaxis Inc.
  4. King Hussein Institute for Biotechnology and Cancer (KHIBC, Jordan)

向作者/读者索取更多资源

Background: One of the significant tumor immune escape mechanisms and substantial barrier for successful immunotherapy is tumor-mediated inhibition of immune response through cell-to-cell or receptor/ligand interactions. Programmed death receptor-1 (PD-1) interaction with its ligands, PD-L1 and PD-L2, is one of the important strategies that many tumors employ to escape immune surveillance. Upon PD-Ls binding to PD-1, T cell receptor (TCR) signaling is dampened, causing inhibition of proliferation, decreased cytokine production, anergy and/or apoptosis. Thus PD-Ls expression by tumor cells serves as a protective mechanism, leading to suppression of tumor-infiltrating lymphocytes in the tumor microenvironment. Lm-LLO immunotherapies have been shown to be therapeutically effective due to their ability to induce potent antigen-specific immune responses. However, it has been demonstrated that infection with Lm leads to up-regulation of PD-L1 on mouse immune cells that can inhibit effector T cells through PD-1/PD-L1 pathway. Methods: Therapeutic and immune efficacy of Listeria-based vaccine (Lm-LLO-E7) in combination with anti-PD-1 antibody was tested in E7 antigen expressing TC-1 mouse tumor model. Tumor growth, survival, as well as peripheral and tumor-infiltrating immune cell profiles after immunotherapy were assessed. Results: Here we demonstrate that the combination of an Lm-LLO immunotherapy with anti-PD-1 antibody that blocks PD-1/PD-L1 interaction, significantly improves immune and therapeutic efficacy of treatment in TC-1 mouse tumor model. Importantly, we show that in addition to significant reduction of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) in both spleen and tumor microenvironment that are mediated solely by the Lm-LLO immunotherapy, the addition of anti-PD-1 antibody to the treatment results in significant increase of antigen-specific immune responses in periphery and CD8 T cell infiltration into the tumor. As a result, this combinational treatment leads to significant inhibition of tumor growth and prolonged survival/complete regression of tumors in treated animals. We also demonstrate that in vitro infection with Lm results in significant upregulation of surface PD-L1 expression on human monocyte-derived dendritic cells suggesting the translational capacity of this finding. Conclusions: Our findings demonstrate that combination of Lm-LLO-based vaccine with blocking of PD-1/PD-L1 interaction is a feasible approach with clinical translation potential that can lead to overall enhancement of the efficacy of anti-tumor immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据