4.8 Article

Ultrafast dissolution and creation of bonds in IrTe2 induced by photodoping

期刊

SCIENCE ADVANCES
卷 4, 期 7, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aar3867

关键词

-

资金

  1. Max Planck Society
  2. Marie Curie International Incoming Fellowship within the Seventh European Community Framework Programme [627864]
  3. Japan Society for the Promotion of Science [12J08331, 15K17709]
  4. Grants-in-Aid for Scientific Research [15K17709, 12J08331] Funding Source: KAKEN

向作者/读者索取更多资源

The observation and control of interweaving spin, charge, orbital, and structural degrees of freedom in materials on ultrafast time scales reveal exotic quantum phenomena and enable new active forms of nanotechnology. Bonding is the prime example of the relation between electronic and nuclear degrees of freedom. We report direct evidence illustrating that photoexcitation can be used for ultrafast control of the breaking and recovery of bonds in solids on unprecedented time scales, near the limit for nuclear motions. We describe experimental and theoretical studies of IrTe2 using femtosecond electron diffraction and density functional theory to investigate bonding instability. Ir-Ir dimerization shows an unexpected fast dissociation and recovery due to the filling of the antibonding d(xy) orbital. Bond length changes of 20% in IrTe2 are achieved by effectively addressing the bonds directly through this relaxation process. These results could pave the way to ultrafast switching between metastable structures by photoinduced manipulation of the relative degree of bonding in this manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据