4.6 Article

Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
卷 120, 期 18, 页码 9303-9322

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JD023304

关键词

dust; atmospheric transport; Southern Ocean; Antarctic; ice core

资金

  1. New Zealand Ministry of Business, Innovation, and Employment Grants through Victoria University of Wellington [RDF-VUW-1103]
  2. GNS Science [540GCT32]

向作者/读者索取更多资源

Aerosol deposition over the Southern Ocean and Antarctica has the potential to alter marine productivity and thus ocean carbon uptake while also impacting radiative balance due to scattering and absorption from atmospheric particulates. Quantification of modern emission, transport, and deposition of terrestrial dust and other airborne material from Southern Hemisphere sources is challenging due to low emission levels and poor detection from remote sensing platforms. Here forward trajectory modeling is used to explore atmospheric transport, independent of deposition processes, from 1979 to 2013. Trajectories are initiated from known arid dust source areas in South America (Patagonia), Australia, and southern Africa, with detailed consideration of New Zealand as a potential source. Results suggest that Patagonian and New Zealand dust and other aerosol emissions share strong atmospheric transport during all seasons, allowing even potentially small New Zealand emissions to contribute significantly to Southern Ocean and Antarctic aerosol loading. We find that atmospheric transport controlling distribution of dust and other aerosols shows distinct spatial variability. New Zealand and Patagonia rapidly contribute a high proportion of trajectories to West Antarctica, while in interior East Antarctica, source contributions are limited and highly mixed. The sensitivity of existing deep ice core sites to modern atmospheric transport is discussed. Finally, interannual variability of poleward trajectory extension over the Pacific and Atlantic sectors of the Southern Ocean highlights the association of both tropical Pacific sea-surface temperature and high-latitude wind variability (e.g., the Southern Annular Mode) with transport of dust and other aerosols to the Southern Ocean and Antarctica.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据