4.4 Article

Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery

出版社

CELL PRESS
DOI: 10.1038/mtm.2014.36

关键词

-

资金

  1. National Institutes of Health [1 U54 HL112309-01, 1 R01 HL092179-01A2, T32GM008602]

向作者/读者索取更多资源

Clinical data support the feasibility and safety of adeno-associated viral (AAV) vectors in gene therapy applications. Despite several clinical trials of AAV-based gene transfer for hemophilia B, a unique set of obstacles impede the development of a similar approach for hemophilia A. These include (i) the size of the factor VIII (fVIII) transgene, (ii) humoral immune responses to fVIII, (iii) inefficient biosynthesis of human fVIII, and (iv) AAV vector immunity. Through bioengineering approaches, a novel fVIII molecule, designated ET3, was developed and shown to improve biosynthetic efficiency 10-to 100-fold. In this study, the utility of ET3 was assessed in the context of liver-directed, AAV-mediated gene transfer into hemophilia A mice. Due to the large size of the expression cassette, AAV-ET3 genomes packaged into viral particles as partial genome fragments. Despite this potential limitation, a single peripheral vein administration of AAV-ET3 into immune-competent hemophilia A mice resulted in correction of the fVIII deficiency at lower vector doses than previously reported for similarly oversized AAV-fVIII vectors. Therefore, ET3 appears to improve vector potency and mitigate at least one of the critical barriers to AAV-based clinical gene therapy for hemophilia A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据