4.5 Article

Neutron monitor yield function: New improved computations

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 118, 期 6, 页码 2783-2788

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/jgra.50325

关键词

cosmic rays; neutron monitor; atmosphere; geomagnetic cutoff

资金

  1. European Union [N 262773]
  2. Academy of Finland
  3. Vaisala foundation
  4. presidium of Russian Academy of Sciences [22]

向作者/读者索取更多资源

A ground-based neutron monitor (NM) is a standard tool to measure cosmic ray (CR) variability near Earth, and it is crucially important to know its yield function for primary CRs. Although there are several earlier theoretically calculated yield functions, none of them agrees with experimental data of latitude surveys of sea-level NMs, thus suggesting for an inconsistency. A newly computed yield function of the standard sea-level 6NM64 NM is presented here separately for primary CR protons and -particles, the latter representing also heavier species of CRs. The computations have been done using the GEANT-4 PLANETOCOSMICS Monte-Carlo tool and a realistic curved atmospheric model. For the first time, an effect of the geometrical correction of the NM effective area, related to the finite lateral expansion of the CR induced atmospheric cascade, is considered, which was neglected in the previous studies. This correction slightly enhances the relative impact of higher-energy CRs (energy above 5-10 GeV/nucleon) in NM count rate. The new computation finally resolves the long-standing problem of disagreement between the theoretically calculated spatial variability of CRs over the globe and experimental latitude surveys. The newly calculated yield function, corrected for this geometrical factor, appears fully consistent with the experimental latitude surveys of NMs performed during three consecutive solar minima in 1976-1977, 1986-1987, and 1996-1997. Thus, we provide a new yield function of the standard sea-level NM 6NM64 that is validated against experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据