4.1 Article

Effect of internal mixture on black carbon radiative forcing

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3402/tellusb.v64i0.10925

关键词

aerosol; black carbon; mixture; coating; forcing

资金

  1. National Research Foundation of Korea [NRF 2011-0005802]

向作者/读者索取更多资源

The effects of coating on black carbon (BC) optical properties and global climate forcing are revisited with more realistic approaches. We use the Generalized Multiparticle Mie method along with a realistic size range of monomers and clusters to compute the optical properties of uncoated BC clusters. Mie scattering is used to compute the optical properties of BC coated by scattering material. When integrated over the size distribution, we find the coating to increase BC absorption by up to a factor of 1.9 (1.8-2.1). We also find the coating can significantly increase or decrease BC backscattering depending on shell size and how shell material would be distributed if BC is uncoated. The effect of coating on BC forcing is computed by the Monte-Carlo Aerosol Cloud Radiation model with observed clouds and realistic BC spatial distributions. If we assume all the BC particles to be coated, the coating increases global BC forcing by a factor of 1.4 from the 1.9 x absorption increase alone. Conversely, the coating can decrease the forcing by up to 60% or increase it by up to 40% by only the BC backscattering changes. Thus, the combined effects generally, but not necessarily, amplify BC forcing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据