4.5 Article

Regulation of bacterial metabolic activity by dissolved organic carbon and viruses

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
卷 118, 期 4, 页码 1573-1583

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013JG002296

关键词

bacterial production; bacterial respiration; bacterial growth efficiency; dissolved organic carbon; viruses; coastal waters

资金

  1. South China Sea Institute of Oceanology [Y35L041001]
  2. University Grants Council of Hong Kong AoE project [AoE/P-04/04-4-II]

向作者/读者索取更多资源

The regulation of bacterial metabolic activity by viruses and dissolved organic carbon (DOC) was examined using natural microbial communities in three treatments (active viruses, inactive viruses, and virus free) at two contrasting coastal sites (pristine vs. eutrophic) with substantial differences in environmental conditions during the wet and dry seasons. Our results showed that net growth rates and production of bacterioplankton were reduced primarily by viruses via repressing metabolically active bacteria with high nucleic acid (HNA) content which had a high capacity for incorporating carbon, while bacterial respiration was primarily regulated by DOC lability. The quality of organic matter played a more important role in regulating bacterial growth efficiency (BGE) than the supply of organic matter in eutrophic coastal waters. The lack of HMW-DOC and high carbon demand in the virus-free treatment resulted in a significant increase in cell-specific bacterial respiration, which was responsible for the lowest bacterial growth efficiency among the three treatments. The presence of viruses did not necessarily lower bacterial growth efficiency since virus-induced mortality alleviated bacterial carbon demand and enhanced carbon cycling. Virus-induced mortality was greater in relatively pristine waters than eutrophic waters, likely since the high supply of substrates alleviated the pressure of viral infection, through extracellular proteases produced by bacteria, which might result in the hydrolytic destruction or modification of viral capsids. An important implication of our results was that the input of riverine DOC and nutrients improved bacterial metabolic activity by alleviating virus-induced mortality of bacteria in estuarine and coastal waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据