4.7 Article

Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption

期刊

REDOX BIOLOGY
卷 2, 期 -, 页码 667-672

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.redox.2014.04.010

关键词

DJ-1; Thioredoxin; Thioredoxin reductase; Oxidative stress; Mitochondria; Parkinson's disease

资金

  1. NIH [RO1 NS45748]

向作者/读者索取更多资源

Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson ' s disease (PD). The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS) formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH) or thioredoxin (Trx) or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR)/Peroxiredoxin (Prx) system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010). Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1(-/-)). Surprisingly, DJ-1(-/-) mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1(-/-) mice, the activities of Trx, Thioredoxin Reductase (TrxR), GSH, glutathione disulfide (GSSG) and glutathione reductase (GR) were measured. Compared to control mice, brains from DJ-1(-/-) mice showed an increase in (1) mitochondrial Trx activity, (2) GSH and GSSG levels and (3) mitochondrial glutaredoxin (GRX) activity. Brains from DJ-1(-/-) mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1(-/-) mice perhaps as an adaptive response to chronic DJ-1 deficiency. (C) 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据