4.3 Article

Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells

期刊

SKELETAL MUSCLE
卷 5, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13395-015-0062-6

关键词

BMP4; Dystrophin; Duchenne muscular dystrophy; Embryonic; hiPSCs; hESCs; Exon skipping; Anthropoids; Isoform; Human

资金

  1. Institut national de la sante et de la recherche medicale
  2. Centre national de la recheiche scientifique
  3. Association Francaise contre les Myopathies
  4. Fondagen
  5. Universite d'Evry
  6. Muscular Dystrophy UK [RA5/3068, RA3/3074] Funding Source: researchfish

向作者/读者索取更多资源

Background: Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. Methods: The bone morphogenetic protein 4 (BMP4) is a critical signaling molecule involved in mesoderm commitment. Human induced pluripotent stem cells (hiPSCs) from DMD and healthy individuals and human embryonic stern cells (hESCs) treated with BMP4 allowed us to model the early steps of myogenesis in normal and DMD contexts. Results: Unexpectedly, 72h following BMP4 treatment, a new long DMD transcript was detected in all tested hiPSCs and hESCs, at levels similar to that found in adult skeletal muscle. This novel transcript named Dp412e has a specific untranslated first exon which is conserved only in a sub group of anthropoids including human. The corresponding novel dystrophin protein of 412-kiloDalton (kDa), characterized by an N-terminal-truncated actin binding domain, was detected in normal BMP4-treated hiPSCs/hESCs and in embryoid bodies. Finally, using a phosphorodiamidate morpholino oligomer (PMO) targeting the DA/ID exon 53, we demonstrated the feasibility of exon skipping validation with this BMP4-inducible hiPSCs model. Conclusions: In this study, the use of hiPSCs to analyze early phases of human development in normal and DMD contexts has led to the discovery of an embryonic 412 kDa dystrophin isoform. Deciphering the regulation process(es) and the function(s) associated to this new isoform can contribute to a better understanding of the DMD physiopathology and potential developmental defects. Moreover, the simple and robust BMP4-inducible model highlighted here, providing large amount of a long DMD transcript and the corresponding protein in only 3 days, is already well adapted to high throughput and high content screening approaches. Therefore, availability of this powerful cell platform can accelerate the development, validation and improvement of DMD genetic therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据