4.3 Article

Reproducibility of quantitative (R)-[C-11]verapamil studies

期刊

EJNMMI RESEARCH
卷 2, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/2191-219X-2-1

关键词

Positron emission tomography; P-glycoprotein; reproducibility; (R)-[C-11]verapamil

资金

  1. European Community's Seventh Framework Programme (FP7) [201380]

向作者/读者索取更多资源

Background: P-glycoprotein [Pgp] dysfunction may be involved in neurodegenerative diseases, such as Alzheimer's disease, and in drug resistant epilepsy. Positron emission tomography using the Pgp substrate tracer (R)-[C-11]verapamil enables in vivo quantification of Pgp function at the human blood-brain barrier. Knowledge of test-retest variability is important for assessing changes over time or after treatment with disease-modifying drugs. The purpose of this study was to assess reproducibility of several tracer kinetic models used for analysis of (R)-[C-11]verapamil data. Methods: Dynamic (R)-[C-11]verapamil scans with arterial sampling were performed twice on the same day in 13 healthy controls. Data were reconstructed using both filtered back projection [FBP] and partial volume corrected ordered subset expectation maximization [PVC OSEM]. All data were analysed using single-tissue and two-tissue compartment models. Global and regional test-retest variability was determined for various outcome measures. Results: Analysis using the Akaike information criterion showed that a constrained two-tissue compartment model provided the best fits to the data. Global test-retest variability of the volume of distribution was comparable for single-tissue (6%) and constrained two-tissue (9%) compartment models. Using a single-tissue compartment model covering the first 10 min of data yielded acceptable global test-retest variability (9%) for the outcome measure K-1. Test-retest variability of binding potential derived from the constrained two-tissue compartment model was less robust, but still acceptable (22%). Test-retest variability was comparable for PVC OSEM and FBP reconstructed data. Conclusion: The model of choice for analysing (R)-[C-11]verapamil data is a constrained two-tissue compartment model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据