4.6 Article

Leachability and Stability of Hexavalent-Chromium-Contaminated Soil Stabilized by Ferrous Sulfate and Calcium Polysulfide

期刊

APPLIED SCIENCES-BASEL
卷 8, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/app8091431

关键词

hexavalent chromium; contaminated soil; leachability; stability; speciation

资金

  1. National Science Foundation for Distinguished Young Scholars of China [51625903]
  2. Chinese National Natural Science Foundation [51479194, 41702349]

向作者/读者索取更多资源

Ferrous sulfate (FeSO4) and calcium polysulfide (CaS5) stabilization are practical approaches to stabilizing hexavalent chromium (Cr(VI))-contaminated soil. The leachability and stability of Cr(VI) and Cr are important factors affecting the effectiveness of stabilized Cr(VI)-contaminated soil. This study compared the leachability and stability of Cr(VI) and Cr in Cr(VI)-contaminated soil stabilized by using FeSO4 and CaS5. The contaminated soil was characterized before and after stabilization, and the effectiveness of FeSO4 and CaS5 stabilization was assessed using leaching, bioaccessibility, alkaline digestion, sequential extraction, and X-ray diffraction tests. Results showed that FeSO4 and CaS5 significantly reduced the leachability and Cr(VI) content in the contaminated soil. The acid-buffering capacity and stability (leachability, bioaccessibility, speciation distribution, and mineral composition) of the Cr(VI)/Cr and Cr(VI) content of CaS5 were better than those of FeSO4. This study demonstrated that CaS5 had a better effect than FeSO4 on the stabilization of Cr(VI) in Cr(VI)-contaminated soil. The CaS5 significantly enhanced the stabilization and immobilization of Cr(VI) and reduced its leachability and toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据