4.6 Article

Gene regulation by translational inhibition is determined by Dicer partnering proteins

期刊

NATURE PLANTS
卷 1, 期 3, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPLANTS.2014.27

关键词

-

资金

  1. Australian Research Council
  2. University of Sydney
  3. CSIRO
  4. QUT
  5. Australian Federal Government EIF Super Science Scheme
  6. University of New South Wales
  7. Australian Research Council Australian Postdoctoral Research Fellowship
  8. University of New South Wales ECR Scheme
  9. Australian Postgraduate Award

向作者/读者索取更多资源

MicroRNAs (miRNAs) are small regulatory RNAs produced by Dicer proteins that regulate gene expression in development and adaptive responses to the environment(1-4). In animals, the degree of base pairing between a miRNA and its target messenger RNA seems to determine whether the regulation occurs through cleavage or translation inhibition(1). In contrast, the selection of regulatory mechanisms is independent of the degree of mismatch between a plant miRNA and its target transcript(5). However, the components and mechanism(s) that determine whether a plant miRNA ultimately regulates its targets by guiding cleavage or translational inhibition are unknown(6). Here we show that the form of regulatory action directed by a plant miRNA is determined by DRB2, a DICER-LIKE1 (DCL1) partnering protein. The dependence of DCL1 on DRB1 for miRNA biogenesis is well characterized(7-9), but we show that it is only required for miRNA-guided transcript cleavage. We found that DRB2 determines miRNA-guided translational inhibition and represses DRB1 expression, thereby allowing the active selection of miRNA regulatory action. Furthermore, our results reveal that the core silencing proteins ARGONAUTE1 (AGO1) and SERRATE (SE) are highly regulated by miRNA-guided translational inhibition. DRB2 has been remarkably conserved throughout plant evolution, raising the possibility that translational repression is the ancient form of miRNA-directed gene regulation in plants, and that Dicer partnering proteins, such as human TRBP, might play a similar role in other eukaryotic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据