4.3 Article

Removal of penicillin G from aqueous phase by Fe+3-TiO2/UV-A process

出版社

BMC
DOI: 10.1186/2052-336X-12-56

关键词

Antibiotic; Penicillin G; Fortified titanium dioxide with Fe+; Nano-photo catalyst removal

资金

  1. Shiraz University of Medical Sciences [91-6372]

向作者/读者索取更多资源

Background: Anomalous use of antibiotics and their entrance into the environment have increased concerns around the world. These compounds enter the environment through an incomplete metabolism and a considerable amount of them cannot be removed using conventional wastewater treatment. Therefore, the main objectives of this research are evaluation of the feasibility of using ultraviolet radiation (UV-A) and fortified nanoparticles of titanium dioxide (TiO2) doped with Fe+3 to remove penicillin G (PENG) from aqueous phase and determining the optimum conditions for maximum removal efficiency. Results: The results showed that the maximum removal rate of penicillin G occurred in acidic pH (pH = 3) in the presence of 90 mg/L Fe+3-TiO2 catalyst. In addition, an increase in pH caused a decrease in penicillin G removal rate. As the initial concentration of penicillin G increased, the removal rate of antibiotic decreased. Moreover, due to the effect of UV on catalyst activation in Fe+3-TiO2/UV-A process, a significant increase was observed in the rate of antibiotic removal. All of the variables in the process had a statistically significant effect (p < 0.001). Conclusion: The findings demonstrated that the antibiotic removal rate increased by decreasing pH and increasing the amount of catalyst and contact time. In conclusion, Fe+3-TiO2/UV-A process is an appropriate method for reducing penicillin G in polluted water resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据