4.6 Article

Hydrothermal growth and optical properties of Nb2O5 nanorod arrays

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 2, 期 38, 页码 8185-8190

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tc01581a

关键词

-

资金

  1. National Science Foundation of China [61274073, 11474088]
  2. National High Technology Research and Development Program of China [2013AA031903]
  3. Applied Basic Research Programs of Wuhan city [2014010101010006]
  4. Outstanding Young Academic Backbone Talents of Hubei Province of China
  5. Key Project of Natural Science Foundation of Hubei Province of China [2013CFA043]

向作者/读者索取更多资源

Nb2O5 nanorod arrays were grown on Nb foil through an in situ hydrothermal treatment process using NH4F as the mineralizing agent and H2O2 as the oxidant. The as-prepared Nb2O5 nanorod arrays were well crystallized with a hexagonal structure and a c-axis orientation. The effects of hydrothermal temperature and concentration of NH4F on the growth of the nanorods were investigated. Nb2O5 nanorod arrays are formed by crystal nucleation, oriented growth, followed by orientation attachment. A higher concentration of NH4F accelerates the generation of Nb2O5 nanorods as a result of corroding Nb foil and releasing Nb ions and promotes the oriented growth of Nb2O5 nanorods. The band gap of Nb2O5 nanorod arrays is measured to be about 3.3 eV with a blue light emission located at 456 nm (2.719 eV) and a cyan light emission located at 490 nm (2.53 eV), respectively. The 2.53 eV peak can well be attributed to the donor-acceptor pair (DAP) emission, and the 2.719 eV peak be related to the conduction-band-to-acceptor transitions. There is only one quenching channel for 2.719 eV peak with increasing temperature, which corresponds to the activation energy of about 16.9 meV, according to the theoretical fitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Self-Sustained Programmable Hygroelectronic Interfaces for Humidity-Regulated Hierarchical Information Encryption and Display

Yaoxin Zhang, Zhen Yu, Hao Qu, Shuai Guo, Jiachen Yang, Songlin Zhang, Lin Yang, Shaoan Cheng, John Wang, Swee Ching Tan

Summary: The emerging moisture-driven energy generation (MEG) technology has potential in fields like information security, but this potential is currently untapped. This study reports an original MEG structure that uses selective coating of ionic hygroscopic hydrogels on a carbon black surface to convert moisture energy. By combining hydrogel patterns and encoding methods, a humidity-regulated information encryption and display platform is developed, providing a hierarchical solution for high-security encryption and display.

ADVANCED MATERIALS (2023)

Article Engineering, Environmental

Zincophilic polymer semiconductor as multifunctional protective layer enables Dendrite-Free zinc metal anodes

Jiangmin Jiang, Zhenghui Pan, Jiaren Yuan, Jun Shan, Chenglong Chen, Shaopeng Li, Yaxin Chen, Quanchao Zhuang, Zhicheng Ju, Hui Dou, Xiaogang Zhang, John Wang, John Wang

Summary: By constructing a stable and robust g-C3N4 protective layer on the surface of zinc metal anodes, the performance of aqueous zinc-ion batteries can be improved, inhibiting dendrite growth and enhancing Coulombic efficiency and lifespan.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Water as a Modifier in a Hybrid Coordination Network Glass

Soren S. Sorensen, Xiangting Ren, Tao Du, Ayoub Traverson, Shibo Xi, Lars R. Jensen, Mathieu Bauchy, Satoshi Horike, John Wang, Morten M. Smedskjaer

Summary: This work demonstrates that water can depolymerize polyhedra with labile metal-ligand bonds in a cobalt-based coordination network, resulting in nonstoichiometric glasses. The addition of water molecules promotes the breakage of network bonds and coordination number changes, thereby lowering melting and glass transition temperatures. These structural changes alter the physical and chemical properties of the glass, similar to the concept of modifiers in oxides. This approach can be extended to other transition metal-based coordination networks, enabling diversification of hybrid glass chemistry.
Article Materials Science, Multidisciplinary

Self-powered sensitive pressure sensor matrix based on patterned arrays of flexible (K,Na)NbO3 piezoelectric nanorods

Lei Jiang, Mengrui Lu, Piaoyun Yang, Yijing Fan, Hao Huang, Juan Xiong, Zhao Wang, Haoshuang Gu, John Wang

Summary: In this study, a pressure sensor matrix capable of two-dimensional pressure mapping was developed by using patterned piezoelectric (K,Na)NbO3 (KNN) nanorod arrays. The KNN nanorods exhibited excellent mechanical flexibility, elasticity, and piezoelectric performance, enabling a high sensitivity of up to 0.20 V N-1 and a detection limit as low as 20 g. The spatially separated micro sensor matrix allowed for accurate self-powered pressure mapping and precise analysis of mechanical stimulations.

SCIENCE CHINA-MATERIALS (2023)

Review Chemistry, Multidisciplinary

SACs on Non-Carbon Substrates: Can They Outperform for Water Splitting?

Tao Sun, Wenjie Zang, Jianguo Sun, Chenguang Li, Jun Fan, Enzhou Liu, John Wang

Summary: Non-carbon-supported single-atom electrocatalysts (SACs) have attracted great interest for water splitting due to their unique bond and coordination properties, as well as their superior and tunable catalytic performance compared to carbon-supported SACs and commercial catalysts. The structure, surficial chemical groups, vacancy defects of non-carbon host materials, as well as the properties and population of single atoms, play important roles in the electrocatalytic performance of these SACs. The wide range of host materials and single atom types present limitless possibilities for the design of SACs with tunable structures and electrocatalysis behaviors.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Polymer Science

Constructive Electroactive 2D/2D MoS2-N-rGO and 1D/2D Bi2S3-N-rGO Heterostructure for Excellent Mo-Bi Supercapattery Applications

Saeid M. Elkatlawy, Abdelhamid A. Sakr, John Wang, Abdelnaby M. Elshahawy

Summary: In this study, an effective strategy was designed to combine transition metal sulfides with nitrogen doped reduced graphene oxide hydrogels, improving the overall supercapattery properties.

JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS (2023)

Article Chemistry, Multidisciplinary

Noncryogenic Air Separation Using Aluminum Formate Al(HCOO)3 (ALF)

Hayden A. Evans, Dan Zhao, Pieremanuele Canepa, Anthony K. Cheetham, Dinesh Mullangi, Taner Yildirim, Yuxiang Wang, Zeyu Deng, Zhaoqiang Zhang, Thuc T. Mai, Fengxia Wei, John Wang, Angela R. Hight Walker, Craig M. Brown

Summary: The process of separating oxygen from air to create oxygen-enriched gas streams is important in both industrial and medical fields. However, existing technologies for this process are energy-intensive and require infrastructure. This study demonstrates that a metal-organic framework, Al(HCOO)3 (ALF), can effectively adsorb oxygen at near-ice temperatures, with good time-dependent selectivity. ALF exhibits a high oxygen adsorption capacity of approximately 1.7 mmol/g at 190K and atmospheric pressure, and approximately 0.3 mmol/g at salt-ice temperatures of 250K. ALF shows potential as a low-cost option for oxygen separation applications.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Exclusive Recognition of CO2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities

Zhaoqiang Zhang, Zeyu Deng, Hayden A. Evans, Dinesh Mullangi, Chengjun Kang, Shing Bo Peh, Yuxiang Wang, Craig M. Brown, John Wang, Pieremanuele Canepa, Anthony K. Cheetham, Dan Zhao

Summary: The exclusive capture of carbon dioxide (CO2) from hydrocarbon mixtures is crucial in the petrochemical industry. A new study introduces a ultramicroporous material, ALF, which can selectively capture CO2 from hydrocarbon mixtures with high capacity and efficiency. The material's unique pore chemistry allows for molecular recognition of CO2 by hydrogen bonding, while rejecting other hydrocarbons.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Physical

Hydrogen Intercalation-Induced Crystallization of Ternary PdNiP Alloy Nanoparticles For Direct Formic Acid Fuel Cells

Hongfei Cheng, Jun Zhou, Huiqing Xie, Songlin Zhang, Jintao Zhang, Shengnan Sun, Ping Luo, Ming Lin, Shijie Wang, Zhenghui Pan, John Wang, Xian Jun Loh, Zhaolin Liu

Summary: Direct formic acid fuel cells (DFAFCs) are a promising energy source in the future low-carbon economy, but the lack of efficient electrocatalysts for anodic formic acid oxidation (FAO) hinders their scale-up and commercialization. The FAO performance of palladium hydrides (PdHx) has been found to be superior to pristine Pd, and this study explores the controlled synthesis and electrocatalytic behaviors of PdHx-based nanomaterials. The hydrogen intercalation-induced crystallization of PdNiP alloy nanoparticles is reported, and the obtained PdNiP-H nanoparticles exhibit excellent FAO performance, demonstrating their potential for DFAFC applications.

ADVANCED ENERGY MATERIALS (2023)

Article Nanoscience & Nanotechnology

Hierarchical Cu Nanoarray/NiFe Hydroxide Nanostructures for Efficient Electrochemical Water Oxidation

Lu Mao, Xiaoyu Hao, Yu Zhang, Siew Yee Wong, Jiating He, Suxi Wang, Ximeng Liu, Xiaolei Huang, John Wang, Xu Li

Summary: In this study, hierarchical NiFe hydroxide-Cu arrays are prepared as the electrocatalysts for oxygen evolution reaction (OER) through solution etch and sequential electrolysis. The electrochemically reduced Cu nanoarrays serve as a conductive core, providing superior conductivity for electron transfer, while the unique hierarchical 3D structure offers a large active surface area, a short ion diffusion path, and open channels for efficient gas release. The resulting NiFe hydroxide-Cu arrays on copper foam exhibit outstanding catalytic performance with current densities of 10 and 100 mA cm(-2) achieved at 245 and 300 mV, respectively, in a 1 M KOH solution. Additionally, a small Tafel slope of 51 mV dec(-1) and excellent electrochemical durability of up to 100 h are demonstrated.

ACS APPLIED NANO MATERIALS (2023)

Review Materials Science, Multidisciplinary

Single-atom metal-nitrogen-carbon catalysts energize single molecule detection for biosensing

Xianyang Zhang, Pengfei Chen, Siwuxie He, Bowen Jiang, Yong Wang, Yonghua Cheng, Jian Peng, Francis Verpoort, John Wang, Zongkui Kou

Summary: Biosensors featuring single molecule detection offer great opportunities in various fields, but face challenges due to the lack of activity, precision molecule selectivity, and understanding of the operating mechanism. Single-atom catalysts (SACs), particularly those that mimic the natural metalloenzyme structure, provide practical-use feasibilities for single molecule detections with high molecular selectivity and easy fabrication. This review discusses the history, advantages, and applications of SACs in molecule-scale biosensors, emphasizing their sensing modes and coordination-modulated signal amplifications.

INFOMAT (2023)

Article Chemistry, Multidisciplinary

MAX, MXene, or MX: What Are They and Which One Is Better?

Jianguo Sun, Binbin Liu, Qi Zhao, Chin Ho Kirk, John Wang

Summary: This article provides an overview of the research progress on MXenes in energy and catalysis, with a specific focus on the potential of termination-free MXene in catalysis and redox reactions. The authors believe that MX has great potential in future catalysis and propose the extension towards high entropy and single-atom modifications.

ADVANCED MATERIALS (2023)

Review Chemistry, Multidisciplinary

Better engineering layered vanadium oxides for aqueous zinc-ion batteries: Going beyond widening the interlayer spacing

Yue Guo, Hanmei Jiang, Binbin Liu, Xingyang Wang, Yifu Zhang, Jianguo Sun, John Wang

Summary: Aqueous zinc-ion batteries (ZIBs) are considered promising for large-scale grid energy storage due to their safety, low costs, and environmental friendliness. Vanadium oxides, particularly V2O5, have been widely used as cathode materials for ZIBs because of their high theoretical capacity and structural stability. However, there are challenges in achieving high capacity, long lifespan, and excellent rate performance with vanadium-based ZIBs.

SMARTMAT (2023)

Article Chemistry, Multidisciplinary

Laser-Ironing Induced Capping Layer on Co-ZIF-L Promoting In Situ Surface Modification to High-Spin Oxide-Carbon Hybrids on the Real Catalyst for High OER Activity and Stability

Weihao Liu, Jing Yang, Yizhe Zhao, Ximeng Liu, Jian Heng, Minghui Hong, Yong-Wei Zhang, John Wang

Summary: This study introduces a novel laser-ironing approach to modulate the structural and compositional evolution of electrocatalysts during the reaction, enhancing their performance and stability. The laser-ironing capping layer (LICL) formed during the process sustains the leaf-like morphology and promotes the formation of highly active Co3O4 nanoclusters. The results provide new insights into facile and high-precision surface microstructure control.

ADVANCED MATERIALS (2023)

Review Chemistry, Physical

Single metal atoms catalysts-Promising candidates for next generation energy storage and conversion devices

Zhihao Lei, C. Sathish, Yanpeng Liu, Ajay Karokoti, John Wang, Liang Qiao, Ajayan Vinu, Jiabao Yi

Summary: This review highlights the recent progress of single-metal-atom catalysts in energy storage and conversion, covering synthetic strategies, various applications, and current challenges. It provides insights for developing high-performance single-metal-atom catalysts for catalytic and energy applications.

ECOMAT (2022)

Article Materials Science, Multidisciplinary

Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophores into polar polymer matrix

Mengjiao Dong, Liyun Liao, Chensheng Li, Yingxiao Mu, Yanping Huo, Zhong-Min Su, Fushun Liang

Summary: This study investigates the influence of the polarity of polymer matrices on persistent room-temperature phosphorescence (pRTP). It is discovered that intense phosphorescence emission can be achieved in highly polar matrices such as polyacrylic acid (PAA). The dipole-dipole interaction between the polar fluorophore and polar matrix is proposed to stabilize the excited state and facilitate the generation of efficient room-temperature phosphorescence emissions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

High spatial resolution X-ray scintillators based on a 2D copper(i) iodide hybrid

Han-Jiang Yang, Weijia Xiang, Xiangzhou Zhang, Jin-Yun Wang, Liang-Jin Xu, Zhong-Ning Chen

Summary: This article reports a 2D copper(I)-based cluster material for X-ray imaging, which exhibits ultra-high spatial resolution, high photoluminescence efficiency, and low detection limit. The material shows excellent linear response to X-ray dose rates and light output, and has the best spatial resolution among reported lead-free metal halide hybrids.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Review Materials Science, Multidisciplinary

Interlayer and intermolecular excitons in various donor-acceptor heterostructures: applications to excitonic devices

Taek Joon Kim, Sang-hun Lee, Dayeong Kwon, Jinsoo Joo

Summary: Donor-acceptor heterostructures using organic-inorganic halide perovskites, two-dimensional transition metal dichalcogenides, pi-conjugated organic small/macro molecules, and quantum dots are promising platforms for exciton-based photonics and optoelectronics. Hetero-interlayer excitons and hetero-intermolecular excitons formed through optical and/or electrical charge transfer in various heterostructures are important quasi-particles for light emission, detection, and harvesting systems.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Designing CMOS compatible efficient ohmic contacts to WSi2N4 via surface-engineered Mo2B monolayer electrodes

Liemao Cao, Xiaohui Deng, Zhen-kun Tang, Rui Tan, Yee Sin Ang

Summary: We investigate the interface properties between WSi2N4 and Mo2B, O-modified Mo2B, and OH-modified Mo2B nanosheets. We find that WSi2N4 and Mo2B form n-type Schottky contacts, while functionalizing Mo2B with O and OH leads to the formation of both n-type and p-type ohmic contacts with WSi2N4. Additionally, we demonstrate the emergence of quasi-ohmic contact with ultralow lateral Schottky barrier and zero vertical interfacial tunneling barriers in Mo2B(OH)2-contacted WSi2N4.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, Minwoo Park

Summary: This study presents a solution to the commercialization challenges of flexible LEDs based on MAPbBr(3) by incorporating polyurethane and an In-Ga-Zn-Sn liquid alloy. The designed devices showed high flexibility, efficiency, and durability, with improved electron injection and reduced defects, making them promising for next-generation displays.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Elucidating the effects of the sidechain substitution direction on the optoelectronic properties of isomeric diketopyrrolopyrrole-based conjugated polymers for near-infrared organic phototransistors

Tao Shen, Zeng Wu, Zhen Jiang, Dongsheng Yan, Yan Zhao, Yang Wang, Yunqi Liu

Summary: Sidechain engineering is an important molecular design strategy for tuning the solid-state packing and structural ordering of conjugated polymers. The effects of sidechain direction on the optoelectronic properties of polymers and device performance were systematically investigated in this study. The results demonstrate that tuning the sidechain substitution direction can effectively improve the molecular structure and light absorption properties of polymers, providing new insights for the rational design of functional polymers.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Phase-engineering compact and flexible CsPbBr3 microcrystal films for robust X-ray detection

Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye

Summary: In this study, a facile strategy using a non-conductive polymer was proposed to fabricate stable, pinhole-free thick films. The effect of introducing a second phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport was investigated. The dual phase devices exhibited improved stability and more effective operation at higher voltages in X-ray detection.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Photoluminescence and structural phase transition relationship in Er-doped BaTiO3 model ferroelectric system

Jingye Zou, Shenglan Hao, Pascale Gemeiner, Nicolas Guiblin, Omar Ibder, Brahim Dkhil, Charles Paillard

Summary: When rare-earth ions are embedded in a ferroelectric material, their photoluminescence can serve as an all-optical probe for temperature, electric field, and mechanical stimulus. However, the impact of ferroelectric phase transitions on photoluminescence is not well understood. In this study, we demonstrate changes in the photoluminescence of green emission bands during critical ferroelectric transitions in an Er-doped BaTiO3 material. We also find that the intensity ratio and wavelength position difference of sub-peaks provide information on the phase transitions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Jiangchao Han, Daming Zhou, Wei Yang, Chen Lv, Xinhe Wang, Guodong Wei, Weisheng Zhao, Xiaoyang Lin, Shengbo Sang

Summary: Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Design of Cr-Ba-doped γ-Ga2O3 persistent luminescence nanoparticles for ratiometric temperature sensing and encryption information transfer

Tianqi Zhao, Renagul Abdurahman, Qianting Yang, Ruxiangul Aiwaili, Xue-Bo Yin

Summary: In this study, we designed and prepared Cr and Ba-doped gamma-Ga2O3 nanoparticles to achieve near-infrared emission and enhance the emission intensity. The emission mechanism was proposed based on the trap depth, band gap, and energy levels of Cr ions. The ratiometric temperature sensing and encryption information transfer demonstrated the potential applications of this technology.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Spin-gapless semiconducting characteristics and related band topology of quaternary Heusler alloy CoFeMnSn

Shuvankar Gupta, Jyotirmoy Sau, Manoranjan Kumar, Chandan Mazumdar

Summary: In this study, a new spin-gapless semiconductor material CoFeMnSn is reported, and its stable structure and spin-polarized band structure are determined through experimental realization and theoretical calculations. The compound exhibits a high ferromagnetic transition temperature, making it excellent for room temperature applications. The nearly temperature-independent resistivity, conductivity, and carrier concentration of the compound, adherence to the Slater-Pauling rule, and the high intrinsic anomalous Hall conductivity achieved through hole doping further confirm its spin-gapless semiconductor nature. Additionally, the compound's SGS and topological properties make it suitable for spintronics and magneto-electronics devices.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Two-dimensional metal-organic nanosheets composed of single-molecule magnets: structural modulation and enhanced magnetism utilizing the steric hindrance effect

Ikumi Aratani, Yoji Horii, Yoshinori Kotani, Hitoshi Osawa, Hajime Tanida, Toshiaki Ina, Takeshi Watanabe, Yohko F. Yano, Akane Mizoguchi, Daisuke Takajo, Takashi Kajiwara

Summary: In this study, two-dimensional arrays of single-molecule magnets (SMMs) based on metal-organic frameworks (MOFs) were systematically modified through Langmuir-Blodgett methods and chemical modifications. The introduction of bulky alkoxide groups induced structural changes and perpendicular magnetic anisotropy. This research provides a promising strategy for the construction of high-density magnetic memory devices using molecular spintronics.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Eulytite-type Ba3Yb(PO4)3:Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range

Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong

Summary: Researchers have successfully developed four different up-conversion phosphors based on the Eulytite-type host Ba3Yb(PO4)(3). The optical temperature sensing properties of these phosphors were thoroughly investigated, and it was found that Ba3Yb(PO4)(3):Tm/Er/Ho showed potential for optical temperature measurement applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Arino, I. de P. R. Moreira, M. Deumal

Summary: This study computationally investigates the conductivity of four isostructural compounds with different Se contents, and reveals the parameters that define their conductivity in stable organic radical materials. The results provide insights into the influence of Se content on the conductivity and highlight the importance of considering multiple parameters in understanding the trends in conductivity.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Interplay between oxygen vacancies and cation ordering in the NiFe2O4 spinel ferrite

Remi Arras, Kedar Sharma, Lionel Calmels

Summary: In this study, we investigated the interplay between structural defects in NiFe2O4, showing that the complex formed by a Ni-Oh/Fe-Td-cation swap and a neutral oxygen vacancy is more stable than these two isolated defects, and significantly reduces the width of the minority-spin band gap.

JOURNAL OF MATERIALS CHEMISTRY C (2024)