4.6 Article

Highly soluble alkoxide magnesium salts for rechargeable magnesium batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 3, 页码 581-584

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta13691d

关键词

-

资金

  1. U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering

向作者/读者索取更多资源

A unique class of air-stable and non-pyrophoric magnesium electrolytes has been developed based on alkoxide magnesium compounds. The crystals obtained from this class of electrolytes exhibit a unique structure of tri-magnesium cluster, [Mg3Cl3(OR)(2)(THF)(6)](+) [(THF)MgCl3](-). High reversible capacities and good rate capabilities have been obtained in Mg-Mo6S8 batteries using these new electrolytes at both 20 and 50 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Computational Predictions of the Stability of Fluorinated Calcium Aluminate and Borate Salts

Heonjae Jeong, Ethan P. Kamphaus, Paul C. Redfern, Nathan T. Hahn, Noel J. Leon, Chen Liao, Lei Cheng

Summary: Energy storage concepts based on multivalent ions, such as calcium, have potential for becoming next-generation batteries. However, the development of calcium batteries is hindered by the lack of suitable materials. Developing a calcium salt that is chemically stable and enables reversible electrodeposition of calcium is critical.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Ultrasonication-Induced Strong Metal-Support Interaction Construction in Water Towards Enhanced Catalysis

Kevin M. Siniard, Meijia Li, Shi-Ze Yang, Junyan Zhang, Felipe Polo-Garzon, Zili Wu, Zhenzhen Yang, Sheng Dai

Summary: Facile and efficient production of ultra-stable metal nanocatalysts based on strong metal-support interactions (SMSI) was achieved through ultrasonication in water at ambient conditions, which generated abundant active intermediates, Ti3+ ions, and oxygen vacancies to induce SMSI overlayer formation. The degree of encapsulation could be controlled by the reducibility of solvents and ultrasonication parameters. This approach can be extended to other metal oxide supports and noble metal nanoparticles, leading to enhanced performance in hydrogenation reactions and CO2 conversion.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Investigation of Rechargeable Calcium Metal-Selenium Batteries Enabled by Borate-Based Electrolytes

Sanghyeon Kim, Nathan T. Hahn, Timothy T. Fister, Noel J. Leon, Xiao-Min Lin, Haesun Park, Peter Zapol, Saul H. Lapidus, Chen Liao, John T. Vaughey

Summary: Calcium-ion batteries (CIBs) have potential for next-generation energy storage due to the low redox potential and abundance of calcium compounds. This study reports the use of elemental Se as a high-capacity cathode material for CIBs operating via a conversion mechanism in a Ca metal battery at room temperature. The Se electrodes exhibit reversible specific capacity and a discharge plateau near 2.0 V (vs Ca2+/Ca). The electrochemical reaction between calcium and selenium is investigated using operando synchrotron-based techniques and discussed.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Physical

Nonclassical Strong Metal-Support Interactions for Enhanced Catalysis

Yifan Sun, Zhenzhen Yang, Sheng Dai

Summary: Strong metal-support interaction (SMSI) plays a crucial role in heterogeneous catalysis, and recent advancements have led to the development of novel catalytic systems beyond the traditional Pt-TiO2 catalyst. Characterization techniques at different scales have been used to unravel the structural complexity of SMSI. Synthesis strategies utilizing chemical, photonic, and mechanochemical driving forces have expanded the definition and application of SMSI. Precise structure engineering has allowed for a better understanding of the interface, entropy, and size effect on the geometric and electronic characteristics. The exploration of metal-support interactions holds immense potential for enhancing catalytic activity, selectivity, and stability.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Chemistry, Multidisciplinary

Chemical Reaction Networks Explain Gas Evolution Mechanisms in Mg-Ion Batteries

Evan Walter Clark Spotte-Smith, Samuel M. Blau, Daniel Barter, Noel J. Leon, Nathan T. Hahn, Nikita S. Redkar, Kevin R. Zavadil, Chen Liao, Kristin A. Persson

Summary: In this study, we combine computational chemical reaction network (CRN) analysis based on density functional theory (DFT) and differential electrochemical mass spectroscopy (DEMS) to study gas evolution from a model Mg-ion battery electrolyte. The results reveal H(2)O, C2H4, and CH3OH as major decomposition products, which are explained by identifying elementary reaction mechanisms using DFT. This combined theoretical-experimental approach provides a means to effectively predict electrolyte decomposition products and pathways when initially unknown.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Materials Science, Multidisciplinary

Computational studies of MXenes

Tao Wu, De-en Jiang

Summary: In the past decade, MXenes have become one of the largest families of two-dimensional materials. This article highlights recent computational studies on MXenes in energy storage, electrocatalysis, and membrane applications. The discussion focuses on the structure, terminal groups, surface chemistry, and electronic structure features that contribute to the performance of MXene materials, providing important atomistic insights. The article also offers an outlook on predictive modeling of MXene materials.

MRS BULLETIN (2023)

Article Multidisciplinary Sciences

Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters

Zhihe Liu, Hua Tan, Bo Li, Zehua Hu, De-en Jiang, Qiaofeng Yao, Lei Wang, Jianping Xie

Summary: In this study, the ligand effects of atomically precise metal nanoclusters on electrocatalysis kinetics were investigated. Atomically precise Au-25 nanoclusters with different ligands were used as electrocatalysts for the oxygen evolution reaction. It was found that Au-25 nanoclusters capped by para-mercaptobenzoic acid exhibited significantly higher performance compared to those capped by other ligands. Mechanistic insights were provided to support the use of atomically precise metal nanoclusters as effective electrocatalysts.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Vibrational signature of hydrated protons confined in MXene interlayers

Mailis Lounasvuori, Yangyunli Sun, Tyler S. Mathis, Ljiljana Puskar, Ulrich Schade, De-En Jiang, Yury Gogotsi, Tristan Petit

Summary: This study investigates the hydration structure of protons intercalated in Ti3C2Tx MXene layers and finds that it differs from protons in bulk water. This finding has important implications for characterizing chemical species in energy storage and conversion applications.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

In Situ Ion-Exchange Metathesis Induced Conformal LiF Surface Films on Cathode (NMC811) as a Cathode Electrolyte Interphase

Bishnu P. P. Thapaliya, Tao Wang, Albina Y. Y. Borisevich, Harry M. M. Meyer III, Xiao-Guang Sun, Mariappan Parans Paranthaman, Craig A. A. Bridges, Sheng Dai

Summary: High-capacity cathodes (LiNi0.8Mn0.1Co0.1O2, NMC811) have the potential for vehicle electrification due to their high gravimetric energy density, but their electrochemical performance depends on the stability of the cathode electrolyte interphase (CEI). A conformal LiF layer formed on the NMC811 electrode surface through an in situ ion-exchange metathesis process improves the electrochemical performance by stabilizing the CEI. This finding could pave the way for enhancing the electrochemical performances and cycling stability of high-capacity cathodes by reengineering the CEI.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Physical

A one-pot synthesis of high-density biofuels through bifunctional mesoporous zeolite-encapsulated Pd catalysts

Qiang Deng, Honggen Peng, Zhenzhen Yang, Tao Wang, Jun Wang, Zheling Zeng, Sheng Dai

Summary: Developing a powerful bifunctional catalyst is crucial for achieving future carbon neutrality by reducing energy consumption in the chemical industry. This study synthesizes mesoporous zeolite-encapsulated palladium nanoparticles (Pd@meso-ZSM-5) using emulsification-demulsification and dry-gel transformation methods, which exhibit remarkable catalytic performance in the one-pot multiple tandem reaction of cyclic ketones to bicyclic alkanes. Unlike traditional two-step synthesis routes, Pd@meso-ZSM-5 efficiently produces bicyclic alkanes instead of monocyclic alkanes, due to the sufficient space for large molecular intermediates provided by mesoporosity and the promoting effect of the acid-Pd interface on intermediate conversion.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Effects of Methylating Imidazolium-Based Ionic Liquids on Viscosity: New Insights from the Compensated Arrhenius Formalism

Allison M. Fleshman, Allison M. Goldman, Wesley J. Hetcher, Stefan L. Debbert, Chi-Linh Do-Thanh, Shannon M. Mahurin, Sheng Dai

Summary: The methylation of imidazolium-based room temperature ionic liquids (RTILs) paired with [Tf2N](-) anion results in an unexpected increase in viscosity, while the viscosity decreases when the methylated imidazolium is paired with [B(CN)(4)](-) anion. The compensated Arrhenius formalism (CAF) is used to study the viscosity observations, focusing on the activation energy and entropy of activation. The results show that the activation energy increases with methylation for [Tf2N](-), but decreases for [B(CN)(4)](-).

JOURNAL OF PHYSICAL CHEMISTRY B (2023)

Article Electrochemistry

Trimer Quinoxalines as Organic Cathode Materials for Lithium-Ion Batteries

Lihong Gao, Bingning Wang, Hieu A. Doan, Yachu Du, Ilya A. Shkrob, Chen Liao

Summary: Discotic quinoxaline trimers have been considered as potential candidates for organic cathodes in lithium-ion batteries, but testing has shown that these materials are still impractical for use.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Monolayer Fullerene Membranes for Hydrogen Separation

Yujing Tong, Hongjun Liu, Sheng Dai, De-en Jiang

Summary: Researchers have discovered a new type of monolayer covalent fullerene network that shows promising potential as a high-permeance, selective hydrogen separation membrane. These membranes have the best pore size match, a unique funnel-shaped pore, and entropic selectivity, making them ideal for separating H-2 from larger gases such as CO2 and O-2. With excellent hydrogen permeance and high selectivity, these ultrathin membranes surpass the 2008 Robeson upper bounds by a large margin.

NANO LETTERS (2023)

Article Chemistry, Multidisciplinary

Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces

Chenkun Zhou, Di Wang, Francisco Lagunas, Benjamin Atterberry, Ming Lei, Huicheng Hu, Zirui Zhou, Alexander S. Filatov, De-en Jiang, Aaron J. Rossini, Robert F. Klie, Dmitri V. Talapin

Summary: Researchers have successfully synthesized a family of hybrid MXenes (h-MXenes) that incorporate amido- and imido-bonding between organic and inorganic parts. These h-MXenes combine the tailorability of organic molecules with the electronic connectivity and other properties of inorganic 2D materials, and exhibit superior stability against hydrolysis.

NATURE CHEMISTRY (2023)

Article Electrochemistry

Ionothermally Synthesized Nanoporous Ti0.95W0.05Nb2O7: a Novel Anode Material for High-Performance Lithium-Ion Batteries

Runming Tao, Tianyu Zhang, Xiao-Guang Sun, Chi-Linh Do-Thanh, Sheng Dai

Summary: This study presents an ionothermal synthesis-assisted doping strategy to prepare a nanoporous W6+-doped TiNb2O7 material (NPTWNO) with improved electronic conductivity and lithium ion diffusion coefficient. The doped W6+ successfully narrows the conduction-valance bandgap and improves the electrochemical performance of NPTWNO, leading to fast-rechargeable lithium-ion batteries.

BATTERIES & SUPERCAPS (2023)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)