4.6 Article

High dispersion of TiO2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi0.5Mn1.5O4

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 44, 页码 18938-18945

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta03557g

关键词

-

资金

  1. Nature Science Foundation of China [20873089, 20975073]
  2. Nature Science Foundation of Jiangsu Province [BK2011272]
  3. Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province [BY2011130]
  4. Key Laboratory of Lithium Ion Battery Materials of Jiangsu Province
  5. China Scholarship Council [201306920005]
  6. Graduate Research and Innovation Projects in Jiangsu Province [CXZZ13_0802]
  7. National Research Foundation of Korea (NRF) - Korea government (MEST) [2009-0092780]
  8. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) of Korea for the Center for Next Generation Dye-sensitized Solar Cells [2010-0001842]

向作者/读者索取更多资源

A new and simple strategy was developed to effectively disperse titanium dioxide (TiO2) nanocrystals into porous carbon (PC), and a series of hierarchical PC-TiO2 composites with different architectures were synthesized. By varying the amount of TiO2, from 30 wt% to 64 wt%, the lithium storage capacity of PC-TiO2 could be controllably varied from 546 mA h g(-1) to 446 mA h g(-1) under a current density of 50 mA g(-1). Also, very stable cycling performances and rate capabilities could be obtained at the rates of 50 mA g(-1) to 1600 mA g(-1). By further increasing the content of TiO2 to 93%, another new composite of TiO2-C was also prepared and it demonstrated a storage capacity of 352 mA h g(-1) at 50 mA g(-1), which is much higher than that for most reported TiO2 materials. Based on these results, new full cells with a LiNi0.5Mn1.5O4 cathode, such as PC-TiO2/LiNi0.5Mn1.5O4, were successfully assembled and investigated. This full cell not only delivered a high energy density of 413 W h kg(-1) but also showed a good rate capability and an energy retention of 90.5% over 100 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Interfacial and Interphasial Chemistry of Electrolyte Components to Invoke High-Performance Antimony Anodes and Non-Flammable Lithium-Ion Batteries

Qujiang Sun, Zhen Cao, Zheng Ma, Junli Zhang, Wandi Wahyudi, Gang Liu, Haoran Cheng, Tao Cai, Erqing Xie, Luigi Cavallo, Qian Li, Jun Ming

Summary: This study thoroughly investigates the functions of electrolyte components in lithium-ion batteries, sheds light on their roles at the molecular scale, and successfully develops a new non-flammable electrolyte.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Non-Flammable Electrolyte Enables High-Voltage and Wide-Temperature Lithium-Ion Batteries with Fast Charging

Yeguo Zou, Zheng Ma, Gang Liu, Qian Li, Dongming Yin, Xuejian Shi, Zhen Cao, Zhengnan Tian, Hun Kim, Yingjun Guo, Chunsheng Sun, Luigi Cavallo, Limin Wang, Husam N. Alshareef, Yang-Kook Sun, Jun Ming

Summary: Electrolyte design is crucial for improving the performance of lithium-ion batteries. However, conventional electrolytes pose safety risks due to their flammability and reactivity at high voltage and extreme temperatures. In this study, a non-flammable fluorinated ester electrolyte was designed, which demonstrated high cycling stability and superior power capability for a graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) battery operated at high voltage (>4.3 V vs. Li/Li+) and wide temperature variations (-50 degrees C-60 degrees C). Furthermore, the research provided new insights into the molecular-level dynamics and interactions among Li+, solvent, and anion, and facilitated the development of high-safety and high-energy-density batteries for harsh conditions.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Optimization of Ni-rich Li[Ni0.92_ xCo0.04Mn0.04Alx]O2 cathodes for high energy density lithium-ion batteries

Un-Hyuck Kim, Soo-Been Lee, Ji-Hyun Ryu, Chong Seung Yoon, Yang -Kook Sun

Summary: Through comparing the electrochemical performance of Li[Ni0.92_xCo0.04Mn0.04Alx]O2 cathodes, a high-performance Ni-rich Li[Ni1_x_y_zCoxMnyAlz]O2 (NCMA) is developed with optimal Al content. The introduction of excess Al results in a refined cathode microstructure, effectively dissipating strain and suppressing the formation of internal cracks. A full cell featuring the optimized NCMA cathode demonstrates excellent long-term cycling stability and energy density, outperforming existing layered cathodes. This research represents a new class of Ni-rich layered cathodes suitable for high-performance electric vehicles.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Multifunctional Doping Strategy to Develop High-Performance Ni-Rich Cathode Material

Nam-Yung Park, Gyeil Cho, Su-Bin Kim, Yang-Kook Sun

Summary: By doping with tantalum, the CS-type cathode encapsulates the Ni-rich region with a Ni-less shell, effectively improving the cycling stability of the cathodes. Ta doping suppresses interdiffusion by segregating the Ta-rich phases at the particle boundaries, maintaining the highly aligned microstructure and the ordered intermixing structure, as well as the concentration gradient, over a wide lithiation temperature range. The Ta-doped CS-type cathode retains 92.6% of its initial capacity after 1000 cycles and exhibits resistance to damage from fast charging.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

High-Energy-Density, Long-Life Li-Metal Batteries via Application of External Pressure

Hun Kim, Su-Hyun Lee, Jae-Min Kim, Chong Seung Yoon, Yang-Kook Sun

Summary: In this study, a carbonate-electrolyte-based Li-metal battery with high areal capacity and long cycle life is proposed. The cycling stability is improved by applying external compressive pressure and a boehmite-coated separator, resulting in 82% retention of initial capacity after 500 cycles. This research provides important insights for realizing high-energy-density Li-metal batteries and demonstrates the potential of employing cell compression to increase battery life and energy density.

ACS ENERGY LETTERS (2023)

Article Chemistry, Physical

Long-Lasting Ni-Rich NCMA Cathodes via Simultaneous Microstructural Refinement and Surface Modification

Hoon-Hee Ryu, Hyung-Woo Lim, Gyeong-Cheol Kang, Nam-Yung Park, Yang-Kook Sun

Summary: In this study, the cycling stability of a Ni-rich NCMA93 cathode was improved by a combination strategy involving microstructural refinement and surface modification, leading to the formation of a robust cathode-electrolyte interphase (CEI) layer on the cathode surface, which suppressed surface degradation and extended battery life.

ACS ENERGY LETTERS (2023)

Article Chemistry, Multidisciplinary

Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries

Honghong Liang, Zheng Ma, Yuqi Wang, Fei Zhao, Zhen Cao, Luigi Cavallo, Qian Li, Jun Ming

Summary: This study achieves reversible lithium-ion (de)intercalation in a propylene carbonate (PC)-based electrolyte containing a fluoroether by tuning the solvent-solvent interaction, providing an opportunity to enhance the compatibility of PC-based electrolytes with graphite anodes.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Unraveling New Role of Binder Functional Group as a Probe to Detect Dynamic Lithium-Ion De-Solvation Process toward High Electrode Performances

Yuqi Wang, Zheng Ma, Zhen Cao, Tao Cai, Gang Liu, Haoran Cheng, Fei Zhao, Luigi Cavallo, Qian Li, Jun Ming

Summary: Binder in lithium-ion batteries plays a crucial role in ensuring stability by adhering electrode materials tightly. Various binder molecules have been designed to enhance adhesion capability and conductivity. This study reveals that the binder also influences the lithium-ion solvation process on the electrode surface, leading to different side reactions, rate capabilities, and tolerance against solvent insertion.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Physical

Mechanism of Doping with High-Valence Elements for Developing Ni-Rich Cathode Materials

Nam-Yung Park, Su-Bin Kim, Myoung-Chan Kim, Sang-Mun Han, Dong-Hwi Kim, Min-Su Kim, Yang-Kook Sun

Summary: Introducing additional elements into Ni-rich cathodes is an essential strategy for addressing the instability of the cathode material. However, traditional doping strategies may lead to accumulation of high-valence elements along the interparticle boundaries, reducing the electrochemical performance. This study investigates a new mechanism for doping high-valence elements into Ni-rich cathodes, which maintains the highly aligned microstructure and high crystallinity of the cathode, thereby enhancing the electrochemical performance.

ADVANCED ENERGY MATERIALS (2023)

Review Chemistry, Physical

Practical Cathodes for Sodium-Ion Batteries: Who Will Take The Crown?

Xinghui Liang, Jang-Yeon Hwang, Yang-Kook Sun

Summary: In recent decades, sodium-ion batteries (SIBs) have attracted increasing attention due to their cost and safety advantages, as well as their ability to overcome the challenges associated with limited lithium/cobalt/nickel resources and environmental pollution. The development of high-energy density and low-cost cathode materials is essential for the commercialization of SIBs. This review provides a comprehensive summary of the research progress and modification strategies for O3-type sodiated transition-metal oxides, which have shown promise as cathode materials for SIBs. The goal is to guide the development of commercial layered oxides and support the next generation of energy-storage systems.

ADVANCED ENERGY MATERIALS (2023)

Article Green & Sustainable Science & Technology

Forming Robust and Highly Li-Ion Conductive Interfaces in High-Performance Lithium Metal Batteries Using Chloroethylene Carbonate Additive

Hun Kim, Su-Hyun Lee, Nam-Yung Park, Jae-Min Kim, Jang-Yeon Hwang, Yang-Kook Sun

Summary: By incorporating chloroethylene carbonate (ClEC) as an additive, a robust and highly ion-conductive solid electrolyte interphase (SEI) layer is designed, improving the cycle stability of the Li metal anode and suppressing microcracking of the Ni-rich layered cathode.

ADVANCED ENERGY AND SUSTAINABILITY RESEARCH (2023)

Article Chemistry, Physical

Long-lasting, reinforced electrical networking in a high-loading Li2S cathode for high-performance lithium-sulfur batteries

Hun Kim, Kyeong-Jun Min, Sangin Bang, Jang-Yeon Hwang, Jung Ho Kim, Chong S. Yoon, Yang-Kook Sun

Summary: Realizing a high-energy density and long-lifespan Li2S cathode requires an innovative design with a high-loading Li2S-based cathode consisting of graphene and carbon nanotubes. The role of carbon nanotubes in stable cycling of high-capacity Li-S batteries is emphasized. The composite cathode demonstrates unprecedented electrochemical properties even with a high Li2S loading, showing ultra-long-term cycling stability over 800 cycles when coupled with a graphite anode in a Li-S full cell.

CARBON ENERGY (2023)

Article Chemistry, Multidisciplinary

Intergranular Shielding for Ultrafine-Grained Mo-Doped Ni-Rich Li[Ni0.96Co0.04]O2 Cathode for Li-Ion Batteries with High Energy Density and Long Life

Geon-Tae Park, Su-Bin Kim, Been Namkoong, Ji-Hyun Ryu, Jung-In Yoon, Nam-Yung Park, Myoung-Chan Kim, Sang-Mun Han, Filippo Maglia, Yang-Kook Sun

Summary: The study proposes a strategy to improve the high-nickel content cathode by constructing ultrafine microstructures and intergranular shielding, effectively solving structural weaknesses, chemical instability, and gas generation issues. This approach enhances the mechanical durability and electrochemical performance of the cathode, extending the battery's lifespan.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Energy & Fuels

Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries

Hoon-Hee Ryu, Hyung-Woo Lim, Sin Gyu Lee, Yang-Kook Sun

Summary: The study proposes a washing process using Co-dissolved water to remove residual lithium and form a protective coating on the Ni-rich layered cathodes. The washing process induces near-surface structure reconstruction and prevents direct contact between the electrolyte and the cathode surface. The addition of a fluorine coating on the washed cathode suppresses by-product decomposition and gas generation during cycling, resulting in extended cycle lives of the cathodes and meeting the requirements of energy density, durability, and safety for next-generation batteries.

NATURE ENERGY (2023)

Article Chemistry, Physical

An argyrodite sulfide coated NCM cathode for improved interfacial contact in normal-pressure operational all-solid-state batteries

Jun Tae Kim, Hyeon-Ji Shin, A-Yeon Kim, Hyeonseong Oh, Hun Kim, Seungho Yu, Hyoungchul Kim, Kyung Yoon Chung, Jongsoon Kim, Yang-Kook Sun, Hun-Gi Jung

Summary: This study proposes a method for improving the performance of all-solid-state batteries by synthesizing controlled sulfide solid electrolyte materials and their simple coating process. The results show that the coated materials exhibit excellent Li-ion conductivity and suppress cathode degradation reactions, enabling high discharge capacity and long cycle life.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)