4.6 Article

High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 9, 页码 3134-3141

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta13951d

关键词

-

资金

  1. Ministerio de Economia y Competitividad [CSD2009-00050, CSD2009-00013]
  2. Generalitat de Catalunya-AGAUR [M2E exp. 2009 SGR 440, 2009 SGR 00035]
  3. European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya)
  4. Ramon y Cajal postdoctoral program
  5. Juan de la Cierva postdoctoral program

向作者/读者索取更多资源

The collapse of nanostructures at high temperature is one of the main drawbacks for the implementation of nanomaterials in some energy applications. An exciting virtual non-degradation up to 1000 degrees C is presented here for ordered mesoporous gadolinia doped ceria. By using the nanocasting method based on the KIT-6 template, the long-term stability of the material is achieved when extending the self-limited grain growth regime, recently proved for thin films, to open three-dimensional structures. Contrary to widely employed high temperature stabilization treatments inside the template, this work shows the advantage of a counterintuitive and cost-effective thermal treatment at intermediate temperatures, lower than the operation temperature. The evolution of the mesostructure with time at high temperatures, ranging from 800 degrees C to 1100 degrees C, is reported in terms of the microstructure (grain size and specific surface area) and catalytic activity (redox ability and oxygen storage capacity). The possibility of extension of this methodology to almost all metal oxides and the capability of working at temperatures significantly over the state-of-the-art open a new avenue for the use of these high-surface area 3D nanostructures in up-to-now forbidden high temperature energy applications such as solid oxide fuel/electrolysis cells, gas separation membranes or high temperature catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据