4.6 Article

Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 13, 页码 4198-4206

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta00050h

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2010CB732203]
  2. National Natural Science Foundation of China [20874079, 21274114]

向作者/读者索取更多资源

The development of biological high-performance materials fabricated from natural polysaccharides has attracted great attention for a sustainable world. In this work, hollow fibers with high strength were spun from a polysaccharide aqueous solution at a concentration of 0.02 g mL(-1). The polysaccharide was a comb-like beta-glucan with short branches isolated from Auricularia auricula-judae, coded as AF1. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) confirmed directly that AF1 existed as a stiff chain conformation in water, and displayed parallel self-orientation behavior. AF1 could self-assemble into well defined hollow nanofibers with diameters less than 100 nm and lengths of tens of micrometers in dilute solution, supported by scanning electron microscopy (SEM). Moreover, AF1 in the disulfonated tetraphenylethene (TPE-SO3Na) aqueous solution exhibited strong luminescence, indicating that the TPE-SO3Na molecules without luminescence in water were trapped in the cavities of the hollow nanofibers through hydrophobic interactions, leading to the aggregation-induced emission (AIE). The nanofibers were composed of relatively hydrophobic inner-walls and hydrophilic shells in water. Interestingly, SEM and polarized light microscopy verified that the nanofibers fused to form an ordered architecture of lamella and then tended to curl into hollow fibers in relatively concentrated solution. The hollow fibers exhibited excellent tensile strength, biocompatibility, organic solvent resistance and birefringence. A schematic model was proposed to describe the construction of the hollow fibers via the hierarchical self-assembly process. The new materials would have potential applications such as drug release as a new class of fibrous carrier, indicators with fluorescence to detect cell growth in cell transplantation, and biomolecular recognition (e. g., DNA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据