4.4 Article

Covariant residual entropy

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP09(2014)156

关键词

Gauge-gravity correspondence; AdS-CFT Correspondence

资金

  1. STFC [ST/J000426/1]
  2. FQXi [RFP3-1334]
  3. Ambrose Monell Foundation
  4. Science and Technology Facilities Council [ST/J000426/1] Funding Source: researchfish
  5. STFC [ST/J000426/1] Funding Source: UKRI

向作者/读者索取更多资源

A recently explored interesting quantity in AdS/CFT, dubbed 'residual entropy', characterizes the amount of collective ignorance associated with either boundary observers restricted to finite time duration, or bulk observers who lack access to a certain spacetime region. However, the previously-proposed expression for this quantity involving variation of boundary entanglement entropy (subsequently renamed to 'differential entropy') works only in a severely restrictive context. We explain the key limitations, arguing that in general, differential entropy does not correspond to residual entropy. Given that the concept of residual entropy as collective ignorance transcends these limitations, we identify two correspondingly robust, covariantly-defined constructs: a 'strip-wedge' associated with boundary observers and a 'rim wedge' associated with bulk observers. These causal sets are well-defined in arbitrary time-dependent asymptotically AdS spacetimes in any number of dimensions. We discuss their relation, specifying a criterion for when these two constructs coincide, and prove an inclusion relation for a general case. We also speculate about the implications for residual entropy. Curiously, despite each construct admitting a well-defined finite quantity related to the areas of associated bulk surfaces, these quantities are not in one-to-one correspondence with the defining regions of unknown. This has nontrivial implications about holographic measures of quantum information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据