4.4 Article

Chiral dynamics in a magnetic field from the functional renormalization group

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP03(2014)009

关键词

Spontaneous Symmetry Breaking; Renormalization Group; Phase Diagram of QCD

资金

  1. Special Postdoctoral Research Program of RIKEN
  2. RIKEN iTHES Project
  3. JSPS KAKENHI [25887014]
  4. Grants-in-Aid for Scientific Research [25887014] Funding Source: KAKEN

向作者/读者索取更多资源

We investigate the quark-meson model in a magnetic field using the functional renormalization group equation beyond the local-potential approximation. Our truncation of the effective action involves anisotropic wave function renormalization for mesons, which allows us to investigate how the magnetic field distorts the propagation of neutral mesons. Solving the flow equation numerically, we find that the transverse velocity of mesons decreases with the magnetic field at all temperatures, which is most prominent at zero temperature. The meson screening masses and the pion decay constants are also computed. The constituent quark mass is found to increase with magnetic field at all temperatures, resulting in the crossover temperature that increases monotonically with the magnetic field. This tendency is consistent with most model calculations but not with the lattice simulation performed at the physical point. Our work suggests that the strong anisotropy of meson propagation may not be the fundamental origin of the inverse magnetic catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据