4.4 Article

New methods for characterizing phases of 2D supersymmetric gauge theories

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP09(2013)143

关键词

Supersymmetric gauge theory; Differential and Algebraic Geometry; Sigma Models

资金

  1. National Science Foundation [PHY11-25915, DMS-1007414]
  2. National Science Foundation [PHY11-25915, DMS-1007414]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Mathematical Sciences [1007414] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study the physics of two-dimensional N = (2; 2) gauged linear sigma models (GLSMs) via the two-sphere partition function. We show that the classical phase boundaries separating distinct GLSM phases, which are described by the secondary fan construction for abelian GLSMs, are completely encoded in the analytic structure of the partition function. The partition function of a non-abelian GLSM can be obtained as a limit from an abelian theory; we utilize this fact to show that the phases of non-abelian GLSMs can be obtained from the secondary fan of the associated abelian GLSM. We prove that the partition function of any abelian GLSM satisfies a set of linear differential equations; these reduce to the familiar A-hypergeometric system of Gel'fand, Kapranov, and Zelevinski for GLSMs describing complete intersections in toric varieties. We develop a set of conditions that are necessary for a GLSM phase to admit an interpretation as the low-energy limit of a non-linear sigma model with a Calabi-Yau threefold target space. Through the application of these criteria we discover a class of GLSMs with novel geometric phases corresponding to Calabi-Yau manifolds that are branched double-covers of Fano threefolds. These criteria provide a promising approach for constructing new Calabi-Yau geometries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据