4.4 Article

Looking for new charged states at the LHC: signatures of magnetic and Rayleigh dark matter

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2013)144

关键词

Beyond Standard Model; Cosmology of Theories beyond the SM; Global Symmetries

资金

  1. Canadian Institute of Particle Physics
  2. NSF [0947827]
  3. Natural Sciences and Engineering Research Council (NSERC) of Canada
  4. Government of Canada through Industry Canada
  5. Province of Ontario through the Ministry of Research and Information (MRI)
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [0947827] Funding Source: National Science Foundation

向作者/读者索取更多资源

Magnetic and Rayleigh dark matter are models describing weak interactions of dark matter with electromagnetism through non-renormalizable operators of dimensions 5 and 7, respectively. Such operators motivate the existence of heavier states that couple to dark matter and are also charged under the electroweak interactions. The recent hints of a gamma-ray line in the Fermi data suggest that these states may be light enough to be produced at the LHC. We categorize such states according to their charges and decay modes, and we examine the corresponding LHC phenomenology. We emphasize unconstrained models that can be discovered in targeted searches at the upgraded LHC run, while also enumerating models excluded by current data. Generally, models with SUw(2)-singlet states or models where the charged states decay predominantly to tau leptons and/or gauge bosons are still viable. We propose searches to constrain such models and, in particular, find superior performance over existing proposals for multi-tau analyses. Finally, we note several scenarios, especially those dominated by tau final states, that cannot be probed even with 300/fb at LHC14, motivating the further refinement of tau-lepton searches to improve sensitivity to such final states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据