4.6 Article

The TLR9 Ligand, CpG-ODN, Induces Protection against Cerebral Ischemia/Reperfusion Injury via Activation of PI3K/Akt Signaling

期刊

出版社

WILEY
DOI: 10.1161/JAHA.113.000629

关键词

apoptosis; cerebral ischemia/reperfusion injury; CpG-ODN; toll-like receptors

资金

  1. NIH [HL071837, GM083016, GM53522]

向作者/读者索取更多资源

Background-Toll-like receptors (TLRs) have been shown to be involved in cerebral ischemia/reperfusion (I/R) injury. TLR9 is located in intracellular compartments and recognizes CpG-DNA. This study examined the effect of CpG-ODN on cerebral I/R injury. Methods and Results-C57BL/6 mice were treated with CpG-ODN by i.p. injection 1 hour before the mice were subjected to cerebral ischemia (60 minutes) followed by reperfusion (24 hours). Scrambled-ODN served as control-ODN. Untreated mice, subjected to cerebral I/R, served as I/R control. The effect of inhibitory CpG-ODN (iCpG-ODN) on cerebral I/R injury was also examined. In addition, we examined the therapeutic effect of CpG-ODN on cerebral I/R injury by administration of CpG-ODN 15 minutes after cerebral ischemia. CpG-ODN administration significantly decreased cerebral I/R-induced infarct volume by 69.7% (6.4 +/- 1.80% vs 21.0 +/- 2.85%, P<0.05), improved neurological scores, and increased survival rate, when compared with the untreated I/R group. Therapeutic administration of CpG-ODN also significantly reduced infarct volume by 44.7% (12.6 +/- 2.03% vs 22.8 +/- 2.54%, P<0.05) compared with untreated I/R mice. Neither control-ODN, nor iCpG-ODN altered I/R-induced cerebral injury or neurological deficits. Nissl staining showed that CpG-ODN treatment preserved neuronal morphology in the ischemic hippocampus. Immunoblot showed that CpG-ODN administration increased Bcl-2 levels by 41% and attenuated I/R-increased levels of Bax and caspase-3 activity in ischemic brain tissues. Importantly, CpG-ODN treatment induced Akt and GSK-3 beta phosphorylation in brain tissue and cultured microglial cells. PI3K inhibition with LY294002 abolished CpG-ODN-induced protection. Conclusion-CpG-ODN significantly reduces cerebral I/R injury via a PI3K/Akt-dependent mechanism. Our data also indicate that CpG-ODN may be useful in the therapy of cerebral I/R injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据