4.6 Article

Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2013.2285378

关键词

Alzheimer's disease (AD); group Lasso; multimodal features; multiple kernel learning (MKL); random Fourier feature (RFF)

向作者/读者索取更多资源

To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L-21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据