4.7 Article

Toward atomic force microscopy and mass spectrometry to visualize and identify lipid rafts in plasmodesmata

期刊

FRONTIERS IN PLANT SCIENCE
卷 5, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2014.00234

关键词

mass spectrometry (MS); atomic force microscopy (AFM); lipid raft; membrane proteins; plasmodesmata (PDs)

资金

  1. Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) [1120169]
  2. National Commission of Science and Technology (CONICYT) [PIA-ACT1108]
  3. Millennium Scientific Initiative (Ministerio de Economia, Fomento y Turismo) [P10-035-F]

向作者/读者索取更多资源

Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where membrane proteins are inserted. It has been postulated that PDs could be formed by lipid rafts, however no structural evidence has shown to visualize and analyse their lipid components. In this perspective article, we discuss proposed experiments to characterize lipid rafts and proteins in the PDs. By using atomic force microscopy (AFM) and mass spectrometry (MS) of purified PD vesicles it is possible to determine the presence of lipid rafts, specific bound proteins and the lipidomic profile of the PD under physiological conditions and after changing transport permeability. In addition, MS can determine the stoichiometry of intact membrane proteins inserted in lipid rafts. This will give novel insights into the role of membrane proteins and lipid rafts on the PD structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据