4.7 Review

Glyco-engineering for biopharmaceutical production in moss bioreactors

期刊

FRONTIERS IN PLANT SCIENCE
卷 5, 期 -, 页码 -

出版社

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fpls.2014.00346

关键词

Physcomitrella patens; moss bioreactor; plant-made pharmaceuticals; glycosylation; posttranslational modifications

资金

  1. contract research Glykobiologie/Glykomik of the Baden-Wurttemberg Stiftung
  2. Excellence Initiative of the German Federal Government [EXC294]
  3. Excellence Initiative of the German State Government [EXC294]

向作者/读者索取更多资源

The production of recombinant biopharmaceuticals (pharmaceutical proteins) is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely Chinese hamster ovary cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production. The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety, and efficacy of the products. The basal land plant Physcomitrella patens (moss) has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin). Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken. Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据