4.6 Article

Real-time monitoring of subsurface microbial metabolism with graphite electrodes

期刊

FRONTIERS IN MICROBIOLOGY
卷 5, 期 -, 页码 -

出版社

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fmicb.2014.00621

关键词

subsurface sediments; microbial activity; anaerobic metabolism; electromicrobiology; aquatic sediments; biogeochemistry

资金

  1. U.S. Department of Energy Office of Science, Office of Biological and Environmental Research [DE-SC0006790]

向作者/读者索取更多资源

Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-mu M range. In order to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2-C-14]-acetate metabolism. There was a direct correlation between current production and the rate that [2-C-14]-acetate was metabolized to (CO2)-C-14 and (CH4)-C-14 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. The results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据