4.5 Review

Quality control in tRNA charging

期刊

WILEY INTERDISCIPLINARY REVIEWS-RNA
卷 3, 期 3, 页码 295-310

出版社

WILEY
DOI: 10.1002/wrna.122

关键词

-

向作者/读者索取更多资源

Faithful translation of the genetic code during protein synthesis is fundamental to the growth, development, and function of living organisms. Aminoacyl- tRNA synthetases (AARSs), which define the genetic code by correctly pairing amino acids with their cognate tRNAs, are responsible for 'quality control' in the flow of information from a gene to a protein. When differences in binding energies of amino acids to an AARS are inadequate, editing is used to achieve high selectivity. Editing occurs at the synthetic active site by hydrolysis of noncognate aminoacyl-adenylates (pretransfer editing) and at a dedicated editing site located in a separate domain by deacylation of mischarged aminoacyl-tRNA (posttransfer editing). Access of nonprotein amino acids, such as homocysteine or ornithine, to the genetic code is prevented by the editing function of AARSs, which functionally partitions amino acids present in living cells into protein and nonprotein amino acids. Continuous editing is part of the tRNA aminoacylation process in living organisms from bacteria to human beings. Preventing mistranslation by the clearance of misactivated amino acids is crucial to cellular homeostasis and has a role in etiology of disease. Although there is a strong selective pressure to minimize mistranslation, some organisms possess error-prone AARSs that cause mistranslation. Elevated levels of mistranslation and the synthesis of statistical proteins can be beneficial for pathogens by increasing phenotypic variation essential for the evasion of host defenses. (c) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据