4.5 Article

Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

期刊

BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY
卷 11, 期 -, 页码 2355-2364

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjoc.11.257

关键词

crosslinked cyclodextrin polymer; interfacial adsorption; nanogel; Pickering emulsion

资金

  1. Japan Society for Promotion of Science [25870402]
  2. Grants-in-Aid for Scientific Research [25870402, 25288081, 15H00744] Funding Source: KAKEN

向作者/读者索取更多资源

Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD) works as an attractive emulsion stabilizer through the formation of a CD-oil complex at the oil-water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel) with a unique surface-active property. Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl)-beta-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30-50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air-water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %), forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels. Conclusion: Soft CD nanogel particles adsorb at the oil-water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据