4.7 Review

Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends

期刊

POLYMERS
卷 4, 期 2, 页码 889-912

出版社

MDPI
DOI: 10.3390/polym4020889

关键词

liquid crystalline polymer; carbon nanotube; nanocomposite; blend

资金

  1. Energy Research Institute
  2. School of Mechanical Aerospace Engineering
  3. Nanyang Technological University, Singapore

向作者/读者索取更多资源

Because of their extraordinary properties, such as high thermal stability, flame retardant, high chemical resistance and high mechanical strength, thermotropic liquid crystalline polymers (TLCPs) have recently gained more attention while being useful for many applications which require chemical inertness and high strength. Due to the recent advance in nanotechnology, TLCPs are usually compounded with nanoparticles to form particulate composites to enhance their properties, such as barrier properties, electrical properties, mechanical properties and thermal properties. Carbon-based nanofillers such as carbon nanotube (CNT), graphene and graphene oxide are the most common fillers used for the TLCP matrices. In this review, we focus on recent advances in thermotropic main-chain liquid crystalline polymer nanocomposites incorporated with CNTs. However, the biggest challenges in the preparation of CNT/TLCP nanocomposites have been shown to be inherent in the dispersion of CNTs into the TLCP matrix, the alignment and control of CNTs in the TLCP matrix and the load-transfer between the TLCP matrix and CNTs. As a result, this paper reviews recent advances in CNT/TLCP nanocomposites through enhanced dispersion of CNTs in TLCPs as well as their improved interfacial adhesion with the TLCP matrices. Case studies on the important role of chemically modified CNTs in the TLCP/thermoplastic polymer blends are also included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据