4.7 Article

The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection

期刊

PLOS PATHOGENS
卷 10, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1003904

关键词

-

资金

  1. NIH R03 [MH094169-01]
  2. SPARC from the Broad Institute [800050]
  3. Postgraduate Research Participation Program
  4. U.S. Army Research and Medical Command

向作者/读者索取更多资源

The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development. Author Summary Orthopoxviruses bring in many of the factors they need for replication and impair the host cell by preventing the expression of host proteins. Although orthopoxviruses are less reliant on the host than some viruses, host factors are still required for infection. Here, we report results from two genome-scale approaches that identify host proteins used by orthopoxviruses during infection. These approaches showed that the master regulator of the heat shock response, heat shock factor 1 (HSF1), is a critical host factor for orthopoxvirus replication. HSF1-regulated genes are some of the only host genes with expression maintained or increased following virus infection. Our studies show that orthopoxviruses enter the cell and activate a host transcription pathway as part of its own replication process. These proteins are then utilized by the virus during infection and packaged into the virion, essentially extending the viral genome to include genes co-opted from the host nuclear DNA. This is supported by the existence of heat shock proteins in the viral genome of non-orthopoxvirus genera. We further show that small-molecule inhibitors of HSF1 and HSF1-transcribed genes are effective inhibitors of orthopoxvirus replication, suggesting a new avenue for antiviral development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据