4.6 Article

Quantitative Modeling of a Gene's Expression from Its Intergenic Sequence

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 10, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1003467

关键词

-

资金

  1. NIH [1R01GM085233]
  2. NSF CAREER [0746303]
  3. NSF [1136913]
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [0746303] Funding Source: National Science Foundation
  6. Emerging Frontiers & Multidisciplinary Activities
  7. Directorate For Engineering [1136913] Funding Source: National Science Foundation

向作者/读者索取更多资源

Modeling a gene's expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we report the first quantitative model of a gene's expression pattern as a function of its locus. We model the expression readout of a locus in two tiers: 1) combinatorial regulation by transcription factors bound to each enhancer is predicted by a thermodynamics-based model and 2) independent contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene's expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were shut down by the model. We applied our model to identify the transcription factors responsible for forming the stripe boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, interference between enhancer activities was a possible factor necessitating enhancer independence in our model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据