4.6 Article

Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 10, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1003558

关键词

-

资金

  1. Israeli Science Foundation
  2. Foundation Adelis
  3. Human Frontier Science Program

向作者/读者索取更多资源

The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据