4.6 Article

Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 9, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1003307

关键词

-

资金

  1. European Community [270273]
  2. Federal Ministry of Education and Research (BMBF) [01GQ1005A, 01GQ1005B]
  3. Max Planck Research School for Physics of Biological and Complex Systems
  4. Israeli Science Foundations (ISF)
  5. Max Planck Society

向作者/读者索取更多资源

Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short-from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据