4.6 Article

Reversible and Noisy Progression towards a Commitment Point Enables Adaptable and Reliable Cellular Decision-Making

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 7, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1002273

关键词

-

资金

  1. NIH [NIGMS RO1 GM088428]
  2. Welch Foundation [I-1674]
  3. James S. McDonnell Foundation [220020141]
  4. Ministerio de Ciencia e Innovacion (Spain) [FIS2009-13360]
  5. ICREA

向作者/读者索取更多资源

Cells must make reliable decisions under fluctuating extracellular conditions, but also be flexible enough to adapt to such changes. How cells reconcile these seemingly contradictory requirements through the dynamics of cellular decision-making is poorly understood. To study this issue we quantitatively measured gene expression and protein localization in single cells of the model organism Bacillus subtilis during the progression to spore formation. We found that sporulation proceeded through noisy and reversible steps towards an irreversible, all-or-none commitment point. Specifically, we observed cell-autonomous and spontaneous bursts of gene expression and transient protein localization events during sporulation. Based on these measurements we developed mathematical population models to investigate how the degree of reversibility affects cellular decision-making. In particular, we evaluated the effect of reversibility on the 1) reliability in the progression to sporulation, and 2) adaptability under changing extracellular stress conditions. Results show that reversible progression allows cells to remain responsive to long-term environmental fluctuations. In contrast, the irreversible commitment point supports reliable execution of cell fate choice that is robust against short-term reductions in stress. This combination of opposite dynamic behaviors (reversible and irreversible) thus maximizes both adaptable and reliable decision-making over a broad range of changes in environmental conditions. These results suggest that decision-making systems might employ a general hybrid strategy to cope with unpredictably fluctuating environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据