4.6 Article

Global Entrainment of Transcriptional Systems to Periodic Inputs

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 6, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1000739

关键词

-

资金

  1. European Union [043379]
  2. [NSF-DMS-0614371]
  3. [NIH-1R01GM086881]
  4. [AFOSR-FA9550-08]

向作者/读者索取更多资源

This paper addresses the problem of providing mathematical conditions that allow one to ensure that biological networks, such as transcriptional systems, can be globally entrained to external periodic inputs. Despite appearing obvious at first, this is by no means a generic property of nonlinear dynamical systems. Through the use of contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all their solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific cases of models of transcriptional systems as well as constructs of interest in synthetic biology. A self-contained exposition of all needed results is given in the paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据