4.7 Article

Film Dynamics and Lubricant Depletion by Droplets Moving on Lubricated Surfaces

期刊

PHYSICAL REVIEW X
卷 8, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.8.031053

关键词

-

资金

  1. Office of Naval Research, U.S. Department of Defense [N00014-17-1-2913]
  2. Advanced Research Projects Agency-Energy, U.S. Department of Energy [DE-AR0000326]
  3. European Commission through the Seventh Framework Programme project DynaSLIPS [626954]
  4. NSF [ECS-0335765]
  5. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Lubricated surfaces have shown promise in numerous applications where impinging foreign droplets must be removed easily; however, before they can be widely adopted, the problem of lubricant depletion, which eventually leads to decreased performance, must be solved. Despite recent progress, a quantitative mechanistic explanation for lubricant depletion is still lacking. Here, we first explain the shape of a droplet on a lubricated surface by balancing the Laplace pressures across interfaces. We then show that the lubricant film thicknesses beneath, behind, and wrapping around a moving droplet change dynamically with the droplet's speed-analogous to the classical Landau-Levich-Derjaguin problem. The interconnected lubricant dynamics results in the growth of the wetting ridge around the droplet, which is the dominant source of lubricant depletion. We then develop an analytic expression for the maximum amount of lubricant that can be depleted by a single droplet. Counterintuitively, faster-moving droplets subjected to higher driving forces deplete less lubricant than their slower-moving counterparts. The insights developed in this work will inform future work and the design of longer-lasting lubricated surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据